THRESHOLD MULTIPARTY QUANTUM-INFORMATION SPLITTING VIA QUANTUM CHANNEL ENCRYPTION

We propose a (t, n)-threshold multiparty quantum-information splitting protocol following some ideas of the standard teleportation protocol [C. H. Bennett, G. Brassard, C. Crpeau, R. Jozsa, A. Peres and W. K. Wootters, Phys. Rev. Lett.70 (1993) 1895] and Tokunaga et al.'s protocol [Y. Tokunaga, T. Okamoto and N. Imoto, Phys. Rev. A71 (2005) 012314]. The sender distributes the classical shared keys to his or her n agents and each agent owns a secret key in advance. The sender's quantum information can be extracted by an agent subset by collaboration in such a way that at least t or more agents can get the quantum information with the mutual assistances but any t - 1 or fewer agents cannot. In contrast to the previous multiparty quantum-information splitting protocols in which the sender's quantum information can be recovered only if all the agents collaborate, our protocol is more practical and more flexible.

[1]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[5]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[6]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[7]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[8]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[9]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[10]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[11]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[12]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[13]  V. N. Gorbachev,et al.  Can the states of the W-class be suitable for teleportation , 2002, quant-ph/0203028.

[14]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[15]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[16]  Tatsuaki Okamoto,et al.  Threshold quantum cryptography , 2005 .

[17]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[18]  Tie-Jun Wang,et al.  Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements , 2008 .

[19]  P. Panigrahi,et al.  Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.