Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is presented using proton-proton collision data recorded by the CMS experiment at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb$^{-1}$. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be $\mu^\text{qqH}_\mathrm{Hb\bar{b}}$ = 1.01$^{+0.55}_{-0.46}$. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be $\mu^\text{incl.}_\mathrm{Hb\bar{b}}$ = 0.99$^{+0.48}_{-0.41}$, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.

[1]  S. M. Etesami,et al.  Precision luminosity measurement in proton-proton collisions at s = 13 TeV in 2015 and 2016 at CMS. , 2021, The European physical journal. C, Particles and fields.

[2]  Pedro Antonio Gutiérrez,et al.  Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at s=13TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgr , 2020, The European Physical Journal C.

[3]  S. M. Etesami,et al.  A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution , 2019, Computing and Software for Big Science.

[4]  M. Stoye,et al.  Jet flavour classification using DeepJet , 2020, Journal of Instrumentation.

[5]  S. M. Etesami,et al.  Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at $\sqrt{s} =$ 13 TeV , 2020 .

[6]  C. Collaboration,et al.  Pileup mitigation at CMS in 13 TeV data , 2020, Journal of Instrumentation.

[7]  V. M. Ghete,et al.  Extraction and validation of a new set of CMS pythia8 tunes from underlying-event measurements , 2019, The European Physical Journal. C, Particles and Fields.

[8]  V. M. Ghete,et al.  Observation of Higgs Boson Decay to Bottom Quarks. , 2018, Physical review letters.

[9]  C. Collaboration,et al.  Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV , 2017, Journal of Instrumentation.

[10]  Torbjörn Sjöstrand,et al.  Some dipole shower studies , 2017, The European Physical Journal C.

[11]  C. Collaboration,et al.  Particle-flow reconstruction and global event description with the CMS detector , 2017, 1706.04965.

[12]  J. Latorre,et al.  Parton distributions from high-precision collider data , 2017, The European Physical Journal C.

[13]  A. Denner,et al.  Precise predictions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V+$$\end{document}V+jets dark matter backgroun , 2017, The European Physical Journal C.

[14]  Khachatryan,et al.  Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV , 2016, 1607.03663.

[15]  S. Y. Shim,et al.  Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .

[16]  H. Haevermaet Measurement of the inelastic proton-proton cross section at 13TeV , 2016, 1607.02033.

[17]  Johannes Bellm,et al.  Herwig 7.0/Herwig++ 3.0 release note , 2015, 1512.01178.

[18]  S. M. Etesami,et al.  Search for the standard model Higgs boson produced through vector boson fusion and decaying to bb , 2015 .

[19]  C. Collaboration,et al.  Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV , 2014, 1412.8662.

[20]  J. Latorre,et al.  Parton distributions for the LHC run II , 2014, 1410.8849.

[21]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[22]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[23]  K. Mawatari,et al.  Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects , 2013, The European physical journal. C, Particles and fields.

[24]  P. Nason,et al.  HW±/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO , 2013, Journal of High Energy Physics.

[25]  C. Collaboration,et al.  Observation of a new boson with mass near 125 GeV in pp collisions at sqrt(s) = 7 and 8 TeV , 2013, 1303.4571.

[26]  Giulia Zanderighi,et al.  Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching , 2012, 1212.4504.

[27]  C. Collaboration,et al.  Identification of b-quark jets with the CMS experiment , 2012, 1211.4462.

[28]  R. Frederix,et al.  Merging meets matching in MC@NLO , 2012, 1209.6215.

[29]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[30]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[31]  A. Vicini,et al.  Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM , 2011, 1111.2854.

[32]  The Cms Collaboration,et al.  Measurement of the Inclusive W and Z Production Cross Sections in pp Collisions at sqrt(s) = 7 TeV , 2011, 1107.4789.

[33]  E. Gross,et al.  Trial factors for the look elsewhere effect in high energy physics , 2010, 1005.1891.

[34]  P. Speckmayer,et al.  The toolkit for multivariate data analysis, TMVA 4 , 2010 .

[35]  E. Re,et al.  A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.

[36]  P. Nason,et al.  NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG , 2009, 0911.5299.

[37]  João Paulo Teixeira,et al.  The CMS experiment at the CERN LHC , 2008 .

[38]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[39]  P. Nason,et al.  Matching NLO QCD computations with Parton Shower simulations: the POWHEG method , 2007, 0709.2092.

[40]  M. Mangano,et al.  Matching matrix elements and shower evolution for top-pair production in hadronic collisions , 2006, hep-ph/0611129.

[41]  A. Oh,et al.  The CMS high level trigger , 2006, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[42]  P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms , 2004, hep-ph/0409146.

[43]  J. Varela,et al.  The CMS trigger system , 2004, 1609.02366.

[44]  J. Kalinowski,et al.  HDECAY: a program for Higgs boson decays in the Standard Model and its supersymmetric extension , 1997, hep-ph/9704448.

[45]  T. Kibble,et al.  Symmetry Breaking in Non-Abelian Gauge Theories , 1967 .

[46]  G. Guralnik,et al.  Global Conservation Laws and Massless Particles , 1964 .

[47]  P. W. Higgs Broken Symmetries and the Masses of Gauge Bosons , 1964 .

[48]  P. W. Higgs Broken symmetries, massless particles and gauge fields , 1964 .

[49]  F. Englert,et al.  Broken Symmetry and the Mass of Gauge Vector Mesons , 1964 .

[50]  N. Harter Cross , 2019, Encyclopedia of Food and Agricultural Ethics.

[51]  J. Cronin Broken Symmetries , 2011 .

[52]  Massless Bosons,et al.  Spontaneous Symmetry Breakdown without Massless Bosons , 2011 .

[53]  Procedure for the LHC Higgs boson search combination in Summer 2011 , 2011 .

[54]  R. Fisher On the Interpretation of χ2 from Contingency Tables, and the Calculation of P , 2010 .

[55]  A. Dell'Acqua,et al.  Geant4—a simulation toolkit , 2003 .

[56]  G. Nardulli,et al.  A STUDY OF THE REACTIONS , 1992 .