Selective C-O Bond Cleavage of Sugars with Hydrosilanes Catalyzed by Piers' Borane Generated In Situ.

Described herein is the selective reduction of sugars with hydrosilanes catalyzed by using Piers' borane [(C6 F5 )2 BH] generated in situ. The hydrosilylative C-O bond cleavage of silyl-protected mono- and disaccharides in the presence of a (C6 F5 )2 BH catalyst, generated in situ from (C6 F5 )2 BOH, takes place with excellent chemo- and regioselectivities to provide a range of polyols. A study of the substituent effects of sugars on the catalytic activity and selectivity revealed that the steric environment around the anomeric carbon (C1) is crucial.

[1]  Martin Oestreich,et al.  B(C6F5)3‐katalysierte chemoselektive Defunktionalisierung von etherhaltigen primären Alkyltosylaten mit Hydrosilanen , 2017 .

[2]  I. Chatterjee,et al.  B(C6 F5 )3 -Catalyzed Chemoselective Defunctionalization of Ether-Containing Primary Alkyl Tosylates with Hydrosilanes. , 2017, Angewandte Chemie.

[3]  Rémi Legay,et al.  Borinic Acid Catalysed Reduction of Tertiary Amides with Hydrosilanes: A Mild and Chemoselective Synthesis of Amines. , 2017, Chemistry.

[4]  M. R. Gagné,et al.  Delineating The Multiple Roles of B(C6F5)3 in the Chemoselective Deoxygenation of Unsaturated Polyols , 2016 .

[5]  Hongyu Zhong,et al.  Diastereoselective B(C6F5)3-Catalyzed Reductive Carbocyclization of Unsaturated Carbohydrates. , 2016, Organic letters.

[6]  B. Morandi,et al.  Catalytic Selective Deoxygenation of Polyols Using the B(C6F5)3/Silane System , 2016 .

[7]  W. Herrmann,et al.  Decoding catalytic activity of platinum carbene hydrosilylation catalysts , 2016 .

[8]  P. Chirik,et al.  Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes , 2016 .

[9]  G. Erker,et al.  Cyclopropane formation under frustrated Lewis pair conditions. , 2016, Chemical communications.

[10]  I. Pápai,et al.  Moisture-Tolerant Frustrated Lewis Pair Catalyst for Hydrogenation of Aldehydes and Ketones , 2015 .

[11]  Nikolaos Drosos,et al.  Bor‐katalysierte regioselektive Desoxygenierung von terminalen 1,2‐Diolen zu 2‐Alkanolen durch die strategische Bildung eines cyclischen Siloxan‐Intermediates , 2015 .

[12]  B. Morandi,et al.  Boron-Catalyzed Regioselective Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled by the Strategic Formation of a Cyclic Siloxane Intermediate. , 2015, Angewandte Chemie.

[13]  M. R. Gagné,et al.  Chemoselective conversion of biologically sourced polyols into chiral synthons. , 2015, Nature chemistry.

[14]  M. Oestreich,et al.  A unified survey of Si-H and H-H bond activation catalysed by electron-deficient boranes. , 2015, Chemical Society reviews.

[15]  Sung-Woo Park,et al.  Boron-catalyzed silylative reduction of quinolines: selective sp3 C-Si bond formation. , 2014, Journal of the American Chemical Society.

[16]  W. Piers,et al.  Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations. , 2014, Nature chemistry.

[17]  Francisco J. Fernández‐Alvarez,et al.  Outer‐Sphere Ionic Hydrosilylation Catalysis , 2014 .

[18]  M. R. Gagné,et al.  Metal-free deoxygenation of carbohydrates. , 2014, Angewandte Chemie.

[19]  M. Oestreich,et al.  Experimental analysis of the catalytic cycle of the borane-promoted imine reduction with hydrosilanes: spectroscopic detection of unexpected intermediates and a refined mechanism. , 2013, Journal of the American Chemical Society.

[20]  Mark S. Taylor,et al.  Organoboron Acids and Their Derivatives as Catalysts for Organic Synthesis , 2013 .

[21]  M. Brookhart,et al.  Selective reduction of carboxylic acids to aldehydes catalyzed by B(C6F5)3. , 2013, Organic letters.

[22]  G. Nikonov,et al.  Facile activation of H-H and Si-H bonds by boranes. , 2012, Journal of the American Chemical Society.

[23]  P. Chirik,et al.  Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes , 2012, Science.

[24]  M. Wagner,et al.  One-Pot Synthesis of [(C6F5)2BH2]− from C6F5MgBr/BH3·SMe2 and Its in Situ Transformation to Piers’ Borane , 2011 .

[25]  Scott J. Miller,et al.  Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. , 2011, Journal of the American Chemical Society.

[26]  M. Brookhart,et al.  Hydrosilylation of epoxides catalyzed by a cationic η1-silane iridium(III) complex. , 2011, Chemical communications.

[27]  M. Brookhart,et al.  Hydrosilation of Carbonyl-Containing Substrates Catalyzed by an Electrophilic η-Silane Iridium(III) Complex. , 2010, Organometallics.

[28]  Yugen Zhang,et al.  An efficient metal-free reduction using diphenylsilane with (tris–perfluorophenyl)borane as catalyst , 2009 .

[29]  O. Blacque,et al.  Metal-Free Hydrogen Activation by the Frustrated Lewis Pairs of ClB(C6F5)2 and HB(C6F5)2 and Bulky Lewis Bases , 2009 .

[30]  Chi-Jen Yang An impending platinum crisis and its implications for the future of the automobile , 2009 .

[31]  P. White,et al.  Scope and mechanism of the iridium-catalyzed cleavage of alkyl ethers with triethylsilane. , 2008, Journal of the American Chemical Society.

[32]  T. Beringhelli,et al.  Solution structure, dynamics and speciation of perfluoroaryl boranes through 1H, 11B and 19F NMR spectroscopy , 2008 .

[33]  Andrew J. Holwell Global Release Liner Industry Conference 2008 , 2008 .

[34]  B. Marciniec Catalysis by transition metal complexes of alkene silylation – recent progress and mechanistic implications , 2005 .

[35]  D. J. Harrison,et al.  Borane-Catalyzed Hydrosilylation of Thiobenzophenone: A New Route to Silicon−Sulfur Bond Formation , 2005 .

[36]  A. Sironi,et al.  The Role of Water in the Oligomerization Equilibria Involving Bis(pentafluorophenyl)borinic Acid in Dichloromethane Solution , 2004 .

[37]  A. Sironi,et al.  Bis(pentafluorophenyl)borinic Acid: a Cyclic Trimer in the Solid State and a Monomer, with Hindered Rotation around the B−OH Bond, in Solution , 2003 .

[38]  B. Tinant,et al.  Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts , 2002, Science.

[39]  V. Gevorgyan,et al.  Highly efficient B(C(6)F(5))(3)-catalyzed hydrosilylation of olefins. , 2002, The Journal of organic chemistry.

[40]  M. Rubin,et al.  A direct reduction of aliphatic aldehyde, acyl chloride, ester, and carboxylic functions into a methyl group. , 2001, The Journal of organic chemistry.

[41]  Piers,et al.  B(C(6)F(5))(3)-Catalyzed hydrosilation of imines via silyliminium intermediates , 2000, Organic letters.

[42]  Gevorgyan,et al.  A novel B(C(6)F(5))(3)-catalyzed reduction of alcohols and cleavage of aryl and alkyl ethers with hydrosilanes , 2000, The Journal of organic chemistry.

[43]  R. Douthwaite Synthesis, crystal structure and reactivity of the dihydroborate [Li(Et2O)][B(C6F5)2(H)2] , 2000 .

[44]  Piers,et al.  Studies on the mechanism of B(C(6)F(5))(3)-catalyzed hydrosilation of carbonyl functions , 2000, The Journal of organic chemistry.

[45]  P. Berben,et al.  Catalytic hydrogenation of fine chemicals: sorbitol production , 1999 .

[46]  K. Ishihara,et al.  ARYLBORON COMPOUNDS AS ACID CATALYSTS IN ORGANIC SYNTHETIC TRANSFORMATIONS , 1999 .

[47]  D. Parks,et al.  Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C6F5)21 , 1998 .

[48]  Tobin J. Marks,et al.  Highly Electrophilic Olefin Polymerization Catalysts. Quantitative Reaction Coordinates for Fluoroarylborane/Alumoxane Methide Abstraction and Ion-Pair Reorganization in Group 4 Metallocene and “Constrained Geometry” Catalysts , 1998 .

[49]  W. Piers,et al.  Pentafluorophenylboranes: from obscurity to applications , 1997 .

[50]  W. Piers,et al.  Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters , 1996 .

[51]  D. Parks,et al.  Bis(pentafluorophenyl)borane: Synthesis, Properties, and Hydroboration Chemistry of a Highly Electrophilic Borane Reagent , 1995 .

[52]  Warren E. Piers,et al.  Bis(pentafluorphenyl)boran: Synthese, Eigenschaften und Hydroborierungschemie eines sehr elektrophilen Borans , 1995 .

[53]  B. Arena Deactivation of ruthenium catalysts in continuous glucose hydrogenation , 1992 .

[54]  C. Pascual,et al.  Synthesis, nmr, and preliminary binding studies of a new chiral macrocycle from β-cyclodextrin , 1987 .

[55]  R. Köster,et al.  Synthesis of new chiral macrocyclic polyhydroxy ethers by reduction of cyclodextrins , 1985 .

[56]  M. Bernabé,et al.  Synthesis of 4-O-(1-deoxy-d-alditol-1-yl)-d-alditols from disaccharide derivatives , 1985 .

[57]  R. Köster,et al.  Katalysierte Acetal‐Reduktion mit ‐Boranen – 1‐O‐Alkyl(aryl)alditole, Anhydroalditole und 1‐O‐Alditylalditole aus O‐Glycopyranosiden , 1985 .

[58]  R. Köster,et al.  Catalyzed Acetal Reduction with BH Boranes—1‐O‐Alkyl(aryl)alditols, Anhydroalditols, and 1‐O‐Alditylalditols from O‐Glycopyranosides , 1985 .

[59]  Jaime Wisnlak,et al.  Hydrogenation of Glucose, Fructose, and Their Mixtures , 1979 .

[60]  J. Speier Homogeneous Catalysis of Hydrosilation by Transition Metals , 1979 .

[61]  J. Wisniak,et al.  Hydrogenation of Xylose over Platinum Group Catalysts , 1974 .