Hadwiger's Conjecture for 3-Arc Graphs

The 3-arc graph of a digraph $D$ is defined to have vertices the arcs of $D$ such that two arcs $uv, xy$ are adjacent if and only if $uv$ and $xy$ are distinct arcs of $D$ with $v\ne x$, $y\ne u$ and $u,x$ adjacent. We prove Hadwiger's conjecture for 3-arc graphs.

[1]  Camino Balbuena,et al.  On the connectivity and restricted edge-connectivity of 3-arc graphs , 2014, Discret. Appl. Math..

[2]  Sanming Zhou Almost covers of 2-arc transitive graphs , 2007, Comb..

[3]  Sanming Zhou,et al.  Imprimitive symmetric graphs, 3-arc graphs and 1-designs , 2002, Discret. Math..

[4]  Paul Seymour,et al.  Hadwiger's Conjecture , 2016, Open Problems in Mathematics.

[5]  Sanming Zhou,et al.  Finite symmetric graphs with two-arc transitive quotients II , 2007 .

[6]  G. Dirac On the structure of k-chromatic graphs , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  L. Sunil Chandran,et al.  Hadwiger's conjecture for proper circular arc graphs , 2009, Eur. J. Comb..

[8]  Sanming Zhou,et al.  Cross Ratio Graphs , 2001 .

[9]  Sanming Zhou,et al.  Hadwiger's Conjecture for the Complements of Kneser Graphs , 2017, J. Graph Theory.

[10]  Sanming Zhou,et al.  A study of 3-arc graphs , 2011, Discret. Appl. Math..

[11]  Deming Li,et al.  Hadwiger's conjecture for powers of cycles and their complements , 2007, Eur. J. Comb..

[12]  Robin Thomas,et al.  Hadwiger's conjecture forK6-free graphs , 1993, Comb..

[13]  Huaien Li,et al.  On the characterization of path graphs , 1993, J. Graph Theory.

[14]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[15]  Sanming Zhou,et al.  A class of finite symmetric graphs with 2-arc transitive quotients , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  D. West Introduction to Graph Theory , 1995 .

[17]  Sanming Zhou,et al.  Constructing a Class of Symmetric Graphs , 2002, Eur. J. Comb..

[18]  Camino Balbuena,et al.  On the edge-connectivity and restricted edge-connectivity of a product of graphs , 2007, Discret. Appl. Math..

[19]  G. Dirac A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .

[20]  Sanming Zhou,et al.  Hamiltonicity of 3-Arc Graphs , 2014, Graphs Comb..

[21]  Bruce A. Reed,et al.  Hadwiger's conjecture for line graphs , 2004, Eur. J. Comb..

[22]  Sanming Zhou,et al.  Diameter and connectivity of 3-arc graphs , 2010, Discret. Math..

[23]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[24]  Maria Chudnovsky,et al.  Hadwiger's conjecture for quasi-line graphs , 2008, J. Graph Theory.

[25]  Haitze J. Broersma,et al.  Path graphs , 1989, J. Graph Theory.

[26]  Sanming Zhou,et al.  Finite symmetric graphs with two-arc transitive quotients , 2005, J. Comb. Theory, Ser. B.