High strain rate behavior of ultrafine-grained Al–1.5 Mg

[1]  W. Blum,et al.  Structural stability of ultrafine-grained copper , 2008 .

[2]  W. Blum,et al.  Deformation kinetics of nanocrystalline nickel , 2007 .

[3]  R. Kapoor,et al.  Deformation behavior of an ultrafine-grained Al–Mg alloy produced by equal-channel angular pressing , 2007 .

[4]  Amit K. Ghosh On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys , 2007 .

[5]  Q. Wei Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses , 2007 .

[6]  W. Blum,et al.  On the Hall–Petch relation between flow stress and grain size , 2006 .

[7]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[8]  R. Kapoor,et al.  Deformation behavior of Al-1.5Mg processed using the equal channel angular pressing technique , 2005 .

[9]  P. Král,et al.  Creep processes in pure aluminium processed by equal-channel angular pressing , 2005 .

[10]  R. Valiev,et al.  Deformation kinetics of ultrafine-grained Cu and Ti , 2005 .

[11]  K. T. Ramesh,et al.  Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression , 2005 .

[12]  H. Conrad,et al.  On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion (ECAE) , 2005 .

[13]  H. Höppel,et al.  Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation , 2005 .

[14]  G. J. Fan,et al.  Deformation behavior of an ultrafine-grained Al¿Mg alloy at different strain rates , 2005 .

[15]  W. Blum,et al.  Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu , 2004 .

[16]  E. Pereloma,et al.  Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes , 2004 .

[17]  K. T. Ramesh,et al.  Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals , 2004 .

[18]  K. T. Ramesh,et al.  Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation , 2004 .

[19]  Yinmin M Wang,et al.  Three strategies to achieve uniform tensile deformation in a nanostructured metal , 2004 .

[20]  D. G. Morris,et al.  Mechanical behaviour of dilute Al-Mg alloy processed by equal channel angular pressing , 2003 .

[21]  H. Conrad Grain size dependence of the plastic deformation kinetics in Cu , 2003 .

[22]  T. Langdon,et al.  Optimizing the procedure of equal-channel angular pressing for maximum superplasticity , 2001 .

[23]  E. Rauch,et al.  Structural and mechanical properties in AA 5083 processed by ECAE , 2000 .

[24]  S. Nemat-Nasser,et al.  Comparison between high and low strain-rate deformation of tantalum , 2000 .

[25]  Terence G. Langdon,et al.  The process of grain refinement in equal-channel angular pressing , 1998 .

[26]  Sia Nemat-Nasser,et al.  Determination of temperature rise during high strain rate deformation , 1998 .

[27]  S. Nemat-Nasser,et al.  Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys , 1997 .

[28]  I. V. Aleksandrov,et al.  Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr , 1997 .

[29]  T. Langdon,et al.  Principle of equal-channel angular pressing for the processing of ultra-fine grained materials , 1996 .

[30]  R. Valiev,et al.  An investigation of microstructural stability in an AlMg alloy with submicrometer grain size , 1996 .

[31]  Sia Nemat-Nasser,et al.  Hopkinson techniques for dynamic recovery experiments , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.