A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension

We describe a cell-centered Godunov scheme for Lagrangian gas dynamics on general unstructured meshes in arbitrary dimension. The construction of the scheme is based upon the definition of some geometric vectors which are defined on a moving mesh. The finite volume solver is node based and compatible with the mesh displacement. We also discuss boundary conditions. Numerical results on basic 3D tests problems show the efficiency of this approach. We also consider a quasi-incompressible test problem for which our nodal solver gives very good results if compared with other Godunov solvers. We briefly discuss the compatibility with ALE and/or AMR techniques at the end of this work. We detail the coefficients of the isoparametric element in the appendix.

[1]  S. K. Godunov,et al.  Reminiscences about Difference Schemes , 1999 .

[2]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[3]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[4]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[5]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[6]  John K. Dukowicz Efficient volume computation for three-dimensional hexahedral cells , 1988 .

[7]  Mark L. Wilkins,et al.  Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .

[8]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[9]  Mikhail Shashkov,et al.  Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .

[10]  Guglielmo Scovazzi,et al.  Galilean invariance and stabilized methods for compressible flows , 2007 .

[11]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[12]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[13]  Guglielmo Scovazzi,et al.  Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .

[14]  C. Zemach,et al.  CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Revision 1 , 1992 .

[15]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[16]  Guglielmo Scovazzi,et al.  A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework , 2007 .

[17]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[18]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[19]  J. U. Brackbill,et al.  BAAL: a code for calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh , 1975 .

[20]  Donald E. Burton,et al.  Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .

[21]  R. LeVeque Numerical methods for conservation laws , 1990 .

[22]  Thomas J. R. Hughes,et al.  Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .

[23]  Raphaël Loubère,et al.  "Curl-q": A vorticity damping artificial viscosity for essentially irrotational Lagrangian hydrodynamics calculations , 2006, J. Comput. Phys..

[24]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[25]  Constant Mazeran Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle , 2007 .

[26]  Bruno Després,et al.  Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .

[27]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[28]  Rémi Abgrall,et al.  A Lagrangian Discontinuous Galerkin‐type method on unstructured meshes to solve hydrodynamics problems , 2004 .

[29]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[30]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[31]  P. P. Whalen,et al.  Algebraic Limitations on Two-Dimensional Hydrodynamics Simulations , 1996 .

[32]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[33]  R. Anderson,et al.  An arbitrary Lagrangian-Eulerian method with adaptive mesh refinement for the solution of the Euler equations , 2004 .