Research on the algorithm of helmet-wearing detection based on the optimized yolov4

[1]  Hong-Yuan Mark Liao,et al.  YOLOv4: Optimal Speed and Accuracy of Object Detection , 2020, ArXiv.

[2]  Amir H. Behzadan,et al.  Deep learning for site safety: Real-time detection of personal protective equipment , 2020 .

[3]  Lisheng Xu,et al.  Hardhat-Wearing Detection Based on a Lightweight Convolutional Neural Network with Multi-Scale Features and a Top-Down Module , 2020, Sensors.

[4]  Jun-Wei Hsieh,et al.  CSPNet: A New Backbone that can Enhance Learning Capability of CNN , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[5]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[6]  Qi Tian,et al.  CenterNet: Keypoint Triplets for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Heng Li,et al.  Real-Time Alarming, Monitoring, and Locating for Non-Hard-Hat Use in Construction , 2019, Journal of Construction Engineering and Management.

[8]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[9]  Shu Liu,et al.  Path Aggregation Network for Instance Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[10]  Xiaochun Luo,et al.  Detecting non-hardhat-use by a deep learning method from far-field surveillance videos , 2018 .

[11]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[12]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Huiru Zheng,et al.  A 3D indoor positioning system based on low-cost MEMS sensors , 2016, Simul. Model. Pract. Theory.

[14]  Srinivas Konda,et al.  Fatal traumatic brain injuries in the construction industry, 2003-2010. , 2016, American journal of industrial medicine.

[15]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[16]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[19]  Xinlei Chen,et al.  Microsoft COCO Captions: Data Collection and Evaluation Server , 2015, ArXiv.

[20]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Jochen Teizer,et al.  Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites , 2013 .

[23]  Xin Yu,et al.  Performance and Challenges in Utilizing Non-Intrusive Sensors for Traffic Data Collection , 2013 .

[24]  Tiago M. Fernández-Caramés,et al.  Real-time personal protective equipment monitoring system , 2012, Comput. Commun..

[25]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[26]  Shuang-Hua Yang,et al.  A survey: localization and tracking mobile targets through wireless sensors network , 2007 .

[27]  F Akbar-Khanzadeh,et al.  Comfort of personal protective equipment. , 1995, Applied ergonomics.