Universality considerations in VLSI circuits

The problem of embedding the interconnection pattern of a circuit into a two-dimensional surface of minimal area is discussed. Since even for some natural patterns graphs containing m connections may require Ω(m2) area, in order to achieve compact embeddings restricted classes of graphs have to be considered. For example, arbitrary trees (of bounded degree) can be embedded in linear area without edges crossing over. Planar graphs can be embedded efficiently only if crossovers are allowed in the embedding.

[1]  Stephen A. Cook,et al.  Time Bounded Random Access Machines , 1973, J. Comput. Syst. Sci..

[2]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[3]  Leslie G. Valiant,et al.  On non-linear lower bounds in computational complexity , 1975, STOC.

[4]  Leslie G. Valiant,et al.  Universal circuits (Preliminary Report) , 1976, STOC '76.

[5]  Robert E. Tarjan,et al.  Application of a Planar Separator Theorem , 1977, FOCS.

[6]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[7]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[8]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[9]  Z. Galil,et al.  Explicit constructions of linear size superconcentrators , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[10]  C. Thompson Area-time complexity for VLSI , 1979, STOC 1979.

[11]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.