A new chemical structure-based model to estimate solid compound solubility in supercritical CO2

Abstract Utilization of new approaches in the determination of drug solubility in supercritical fluids can reduce the computation time and represent reliable results. This also leads to more applications of the supercritical technology in the field of drug manufacturing. A least-square support vector machine (LSSVM) approach is employed in this study in order to predict 33 different drug solubility in supercritical CO2. The solubility of the drugs is estimated as a function of temperature, pressure, supercritical CO2 density, and 20 different chemical substructures. LSSVM results are then compared to those obtained from 8 previously reported semi-empirical correlations. Satisfying predictions are performed by the proposed LSSVM with an average absolute relative deviation of 4.92% and determination coefficient of 0.998 for the testing dataset. Therefore, the proposed LSSVM can be applied as a reliable predictive tool to estimate the drugs’ solubility, if drugs’ chemical structures are given.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Alireza Samadi Lemraski,et al.  Prediction of solubility of ammonia in liquid electrolytes using Least Square Support Vector Machines , 2016, Ain Shams Engineering Journal.

[3]  A. Mohammadi,et al.  Prediction of CO2 loading capacities of aqueous solutions ofabsorbents using different computational schemes , 2017 .

[4]  B. Lu,et al.  Supercritical fluid extraction with carbon dioxide and ethylene , 1983 .

[5]  Tony Clifford,et al.  Fundamentals of Supercritical Fluids , 1999 .

[6]  D. E. Knox Solubilities in supercritical fluids , 2005 .

[7]  Abdolhossein Hemmati-Sarapardeh,et al.  Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids , 2014 .

[8]  Amyn S. Teja,et al.  Solubility of Solids in Supercritical Fluids: Consistency of Data and a New Model for Cosolvent Systems , 2000 .

[9]  Y. Yamini,et al.  Supercritical CO2 and highly selective aromatase inhibitors: Experimental solubility and empirical data correlation , 2009 .

[10]  A. Mohammadi,et al.  Rigorous modeling of CO2 equilibrium absorption in ionic liquids , 2017 .

[11]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[12]  N. Foster,et al.  Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expressions , 2002 .

[13]  Ali Abbas,et al.  Estimation of air dew point temperature using computational intelligence schemes , 2016 .

[14]  N. Alizadeh,et al.  Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system , 2010 .

[15]  Ž. Knez,et al.  Micronization of drugs using supercritical carbon dioxide. , 1999, International journal of pharmaceutics.

[16]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[17]  K. Bartle,et al.  Solubilities of solids and liquids of low volatility in supercritical carbon dioxide , 1991 .

[18]  Alireza Baghban,et al.  Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches , 2015 .

[19]  Alireza Bahadori,et al.  Computational intelligent strategies to predict energy conservation benefits in excess air controlled gas-fired systems , 2016 .

[20]  Farhad Gharagheizi,et al.  Evaluation of experimental data for wax and diamondoids solubility in gaseous systems , 2012 .

[21]  Y. Yamini,et al.  Measurement and correlation of the solubility of two steroid drugs in supercritical carbon dioxide using semi empirical models , 2013 .

[22]  Y. Yamini,et al.  Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations , 2007 .

[23]  I. Medina,et al.  Solubilities of zopiclone and nimodipine in supercritical carbon dioxide , 2001 .

[24]  J. Chrastil,et al.  Solubility of solids and liquids in supercritical gases , 1982 .

[25]  R. Hernandez,et al.  Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model , 2008 .

[26]  G. Brunner,et al.  Solubilities of the Fat-Soluble Vitamins A, D, E, and K in Supercritical Carbon Dioxide , 1997 .

[27]  Jieping Ye,et al.  SVM versus Least Squares SVM , 2007, AISTATS.

[28]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[29]  Y. Yamini,et al.  Solubility of some inhaled glucocorticoids in supercritical carbon dioxide , 2005 .

[30]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[31]  Yadollah Yamini,et al.  Solubilities of the Drugs Benzocaine, Metronidazole Benzoate, and Naproxen in Supercritical Carbon Dioxide , 2004 .

[32]  M. Rezaee,et al.  Measurement and correlation solubility of cefixime trihydrate and oxymetholone in supercritical carbon dioxide (CO2) , 2013 .

[33]  Amin Bemani,et al.  Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN , 2018 .

[34]  Jianchao Cai,et al.  Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status , 2018 .

[35]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[36]  Y. Yamini,et al.  Solubilities of Some Nitrogen-Containing Drugs in Supercritical Carbon Dioxide , 2001 .

[37]  J. Shim,et al.  Solubility of C. I. Disperse Red 60 and C. I. Disperse Blue 60 in Supercritical Carbon Dioxide , 1999 .

[38]  Y. Yamini,et al.  Development and evaluation of a new semi-empirical model for correlation of drug solubility in supercritical CO2 , 2014 .

[39]  Zhijian Liu,et al.  Application of Artificial Neural Networks for Catalysis: A Review , 2017 .

[40]  E. J. Martínez de la Ossa,et al.  Solubility of the antibiotic Penicillin G in supercritical carbon dioxide , 1999 .