RNA binding proteins and the pathological cascade in ALS/FTD neurodegeneration

Mutant proteins associated with the neurodegenerative diseases ALS and FTD contribute to dysfunction of the intracellular RNA and protein quality control machineries, providing potential targets for developing new therapeutics. Advanced genetic approaches have accelerated the identification of causative genes linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the disease-related proteins encoded by these genes form aggregates in the cellular machineries that regulate RNA and protein quality control in cells. Cross-talk among the signaling pathways governing these machineries leads to pathological cascades mediated by the accumulation of mutant RNA binding proteins. We outline the molecular basis of ALS and FTD pathogenesis and discuss the prospects for therapeutic strategies to treat these diseases.

[1]  M. Mesulam,et al.  TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics , 2017, Neuron.

[2]  P. Gleeson,et al.  C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking , 2017, Human molecular genetics.

[3]  Norihiro Suzuki,et al.  Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. , 2016, Brain : a journal of neurology.

[4]  Jian-Fu Chen,et al.  A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy , 2016, Science Advances.

[5]  D. Borchelt,et al.  C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD , 2016, Neuron.

[6]  M. Turner,et al.  C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell‐Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia , 2016, Stem cells.

[7]  Robert H. Brown,et al.  CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia , 2016, Nature Communications.

[8]  D. Ito,et al.  Disturbance of proteasomal and autophagic protein degradation pathways by amyotrophic lateral sclerosis-linked mutations in ubiquilin 2. , 2016, Biochemical and biophysical research communications.

[9]  S. Saxena,et al.  C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress , 2016, Molecular Neurobiology.

[10]  L. Petrucelli,et al.  C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins , 2016, Nature Neuroscience.

[11]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[12]  Xiang-Dong Fu,et al.  Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss , 2016, The EMBO journal.

[13]  J. Tapia,et al.  ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function , 2016, Nature Communications.

[14]  P. Kallunki,et al.  Development of Passive Immunotherapies for Synucleinopathies , 2016, Movement disorders : official journal of the Movement Disorder Society.

[15]  M. Mann,et al.  Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA , 2016, Science.

[16]  Yimei Lu,et al.  ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43 , 2016, PLoS biology.

[17]  Deyu Li,et al.  TDP-43 is intercellularly transmitted across axon terminals , 2015, The Journal of cell biology.

[18]  Claire H. Michel,et al.  ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function , 2015, Neuron.

[19]  A. Kanagaraj,et al.  Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization , 2015, Cell.

[20]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[21]  Bruce L. Miller,et al.  GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport , 2015, Nature.

[22]  F. Gage,et al.  Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS , 2015, Nature Neuroscience.

[23]  Sean J. Miller,et al.  The C9orf72 repeat expansion disrupts nucleocytoplasmic transport , 2015, Nature.

[24]  P. Wong,et al.  TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD , 2015, Science.

[25]  Raymond D. Schellevis,et al.  C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits , 2015, Annals of neurology.

[26]  C. Shaw,et al.  Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration , 2015, Acta neuropathologica communications.

[27]  M. Monteiro,et al.  Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations , 2015, PloS one.

[28]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[29]  E. Sigurdsson,et al.  Tau immunotherapy for Alzheimer's disease. , 2015, Trends in molecular medicine.

[30]  G. Sobue,et al.  FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization , 2015, Nature Communications.

[31]  T. Hashikawa,et al.  FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis , 2015, Acta neuropathologica communications.

[32]  Guang-Chao Chen,et al.  Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism , 2015, Autophagy.

[33]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[34]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[35]  D. Ito,et al.  Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. , 2015, Human molecular genetics.

[36]  D. Ito,et al.  Evidence of a link between ubiquilin 2 and optineurin in amyotrophic lateral sclerosis. , 2015, Human molecular genetics.

[37]  M. Kornhuber,et al.  Phenotype of matrin‐3–related distal myopathy in 16 German patients , 2014, Annals of neurology.

[38]  Kevin F. Bieniek,et al.  Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress , 2014, Acta Neuropathologica.

[39]  L. Collin,et al.  Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer's disease. , 2014, Brain : a journal of neurology.

[40]  I. Bozzoni,et al.  An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA–FUS regulatory circuitry , 2014, Nature Communications.

[41]  John L. Robinson,et al.  TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord , 2014, Acta Neuropathologica.

[42]  Gregor Bieri,et al.  Profilin 1 Associates with Stress Granules and ALS-Linked Mutations Alter Stress Granule Dynamics , 2014, The Journal of Neuroscience.

[43]  J. de Belleroche,et al.  The role of D-serine and glycine as co-agonists of NMDA receptors in motor neuron degeneration and amyotrophic lateral sclerosis (ALS) , 2014, Front. Synaptic Neurosci..

[44]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[45]  L. Petrucelli,et al.  ALS-Linked Mutations Enlarge TDP-43-Enriched Neuronal RNA Granules in the Dendritic Arbor , 2014, The Journal of Neuroscience.

[46]  A. Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[47]  P. Rossini,et al.  Mutations in the 3' untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. , 2013, Human molecular genetics.

[48]  E. Sigurdsson,et al.  Antibody Uptake into Neurons Occurs Primarily via Clathrin-dependent Fcγ Receptor Endocytosis and Is a Prerequisite for Acute Tau Protein Clearance* , 2013, The Journal of Biological Chemistry.

[49]  S. Lorenzl,et al.  Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.

[50]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[51]  D. Mann,et al.  Prion-like properties of pathological TDP-43 aggregates from diseased brains. , 2013, Cell reports.

[52]  Murray Grossman,et al.  Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis , 2013, Annals of neurology.

[53]  R. Parker,et al.  Eukaryotic Stress Granules Are Cleared by Autophagy and Cdc48/VCP Function , 2013, Cell.

[54]  Oliver D. King,et al.  Stress granules as crucibles of ALS pathogenesis , 2013, The Journal of cell biology.

[55]  Bjarne Udd,et al.  Welander distal myopathy is caused by a mutation in the RNA‐binding protein TIA1 , 2013, Annals of neurology.

[56]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[57]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[58]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[59]  V. Meininger,et al.  Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology , 2013, Acta Neuropathologica.

[60]  S. Arnold,et al.  [18F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies , 2012, Acta Neuropathologica.

[61]  D. Ito,et al.  Roles of Ataxin-2 in Pathological Cascades Mediated by TAR DNA-binding Protein 43 (TDP-43) and Fused in Sarcoma (FUS)* , 2012, The Journal of Biological Chemistry.

[62]  T. Hortobágyi,et al.  Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion , 2012, Acta Neuropathologica.

[63]  Steven B. Bradfute,et al.  TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. , 2012, Immunity.

[64]  G. Rouleau,et al.  Exome sequencing identifies FUS mutations as a cause of essential tremor. , 2012, American journal of human genetics.

[65]  Oliver D. King,et al.  The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease , 2012, Brain Research.

[66]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[67]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels , 2012, Cell.

[68]  C. Haass,et al.  Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and TAR DNA-binding Protein of 43 kDa (TDP-43)* , 2012, The Journal of Biological Chemistry.

[69]  H. Hakonarson,et al.  Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[70]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[71]  J. Trojanowski,et al.  A yeast functional screen predicts new candidate ALS disease genes , 2011, Proceedings of the National Academy of Sciences.

[72]  D. Ito,et al.  Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS , 2011, Neurology.

[73]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[74]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[75]  C. Sander,et al.  RNA targets of wild-type and mutant FET family proteins , 2011, Nature Structural &Molecular Biology.

[76]  L. Petrucelli,et al.  Correction: Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue , 2011, PLoS ONE.

[77]  Olaf Ansorge,et al.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. , 2011, Brain : a journal of neurology.

[78]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[79]  Sebastian A. Wagner,et al.  Phosphorylation of the Autophagy Receptor Optineurin Restricts Salmonella Growth , 2011, Science.

[80]  Robert H. Brown,et al.  Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis , 2011, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[81]  J. Ule,et al.  Characterising the RNA targets and position-dependent splicing regulation by TDP-43; implications for neurodegenerative diseases , 2011, Nature Neuroscience.

[82]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[83]  O. Brady,et al.  Regulation of TDP‐43 aggregation by phosphorylation andp62/SQSTM1 , 2011, Journal of neurochemistry.

[84]  D. Ito,et al.  Nuclear transport impairment of amyotrophic lateral sclerosis‐linked mutations in FUS/TLS , 2011, Annals of neurology.

[85]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[86]  L. Petrucelli,et al.  Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue , 2010, PloS one.

[87]  M. Monteiro,et al.  Ubiquilin at a crossroads in protein degradation pathways , 2010, Autophagy.

[88]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[89]  A. Ludolph,et al.  Novel missense and truncating mutations in FUS/TLS in familial ALS , 2010, Neurology.

[90]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[91]  I. Mackenzie,et al.  ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import , 2010, The EMBO journal.

[92]  D. Price,et al.  Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism , 2010, Proceedings of the National Academy of Sciences.

[93]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[94]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[95]  C. Shaw,et al.  Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase , 2010, Proceedings of the National Academy of Sciences.

[96]  P. Brundin,et al.  Prion-like transmission of protein aggregates in neurodegenerative diseases , 2010, Nature Reviews Molecular Cell Biology.

[97]  William D Fraser,et al.  Genome wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone , 2010, Nature Genetics.

[98]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[99]  C. Sephton,et al.  TDP-43 Is a Developmentally Regulated Protein Essential for Early Embryonic Development* , 2009, The Journal of Biological Chemistry.

[100]  D. Ito,et al.  Characterization of Alternative Isoforms and Inclusion Body of the TAR DNA-binding Protein-43* , 2009, The Journal of Biological Chemistry.

[101]  J. Charcot Leçons sur les Maladies Du Système Nerveux Faites à La Salpêtrière , 2009 .

[102]  A. L. La Spada,et al.  ALS motor phenotype heterogeneity, focality, and spread , 2009, Neurology.

[103]  J. Beckmann,et al.  Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. , 2009, American journal of human genetics.

[104]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[105]  M. Pericak-Vance,et al.  Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2009, Science.

[106]  M. Morita,et al.  Phosphorylated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2008, Annals of neurology.

[107]  P. Anderson,et al.  Stress granules: the Tao of RNA triage. , 2008, Trends in biochemical sciences.

[108]  J. Trojanowski,et al.  TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. , 2007, Archives of neurology.

[109]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[110]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[111]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[112]  I. Nishimoto,et al.  Characterization of Amyotrophic Lateral Sclerosis-linked P56S Mutation of Vesicle-associated Membrane Protein-associated Protein B (VAPB/ALS8)* , 2006, Journal of Biological Chemistry.

[113]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[114]  J. Weissman,et al.  A Critical Role for Amino-Terminal Glutamine/Asparagine Repeats in the Formation and Propagation of a Yeast Prion , 1998, Cell.

[115]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.