Termination detection strategies in evolutionary algorithms: a survey

This paper provides an overview of developments on termination conditions in evolutionary algorithms (EAs). It seeks to give a representative picture of the termination conditions in EAs over the past decades, segment the contributions of termination conditions into progress indicators and termination criteria. With respect to progress indicators, we consider a variety of indicators, in particular in convergence indicators and diversity indicators. With respect to termination criteria, this paper reviews recent research on threshold strategy, statistical inference, i.e., Kalman filters, as well as Fuzzy methods, and other methods. Key developments on termination conditions over decades include: (i) methods of judging the algorithm's search behavior based on statistics, and (ii) methods of detecting the termination based on different distance formulations.

[1]  Hans-Georg Beyer,et al.  Convergence Analysis of Evolutionary Algorithms That Are Based on the Paradigm of Information Geometry , 2014, Evolutionary Computation.

[2]  Jesús García,et al.  A stopping criterion based on Kalman estimation techniques with several progress indicators , 2009, GECCO.

[3]  Kalyanmoy Deb,et al.  An Optimality Theory-Based Proximity Measure for Set-Based Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[4]  Sheng Chen,et al.  Particle swarm optimization with thresheld convergence , 2013, 2013 IEEE Congress on Evolutionary Computation.

[5]  Irene Moser,et al.  Entropy-based adaptive range parameter control for evolutionary algorithms , 2013, GECCO '13.

[6]  Ke Lu,et al.  Finding the Trade-off between Robustness and Worst-case Quality , 2015, GECCO.

[7]  Heike Trautmann,et al.  A Convergence Criterion for Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing , 2008, PPSN.

[8]  Heike Trautmann,et al.  A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms , 2011, EMO.

[9]  K. Kammeyer,et al.  Examination of Stopping Criteria for Differential Evolution based on a Power Allocation Problem , 2006 .

[10]  I. Nishizaki,et al.  Interactive fuzzy programming for decentralized two-level multidimensional 0-1 knapsack problems through genetic algorithms with decomposition procedures , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[11]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[12]  Kalyanmoy Deb,et al.  Approximate KKT points and a proximity measure for termination , 2013, J. Glob. Optim..

[13]  Haldun Aytug,et al.  Stopping Criteria for Finite Length Genetic Algorithms , 1996, INFORMS J. Comput..

[14]  Wenyin Gong,et al.  A new adaptive Kalman filter by combining evolutionary algorithm and fuzzy inference system , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[15]  Jesús García,et al.  A stopping criterion for multi-objective optimization evolutionary algorithms , 2016, Inf. Sci..

[16]  Jesús García,et al.  An approach to stopping criteria for multi-objective optimization evolutionary algorithms: The MGBM criterion , 2009, 2009 IEEE Congress on Evolutionary Computation.

[17]  Kay Chen Tan,et al.  Online Diversity Assessment in Evolutionary Multiobjective Optimization: A Geometrical Perspective , 2015, IEEE Transactions on Evolutionary Computation.

[18]  Oscar Castillo,et al.  A new gravitational search algorithm using fuzzy logic to parameter adaptation , 2013, 2013 IEEE Congress on Evolutionary Computation.

[19]  Jun Zhang,et al.  Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[20]  Debora Gil,et al.  Detecting Loss of Diversity for an Efficient Termination of EAs , 2013, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[21]  Enrique Alba,et al.  A Study of Convergence Speed in Multi-objective Metaheuristics , 2008, PPSN.

[22]  Heike Trautmann,et al.  Online convergence detection for multiobjective aerodynamic applications , 2009, 2009 IEEE Congress on Evolutionary Computation.

[23]  Xin Feng,et al.  A fuzzy stop criterion for genetic algorithms using performance estimation , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[24]  Risto Miikkulainen,et al.  Effective diversity maintenance in deceptive domains , 2013, GECCO '13.

[25]  Masao Fukushima,et al.  Genetic algorithm with automatic termination and search space rotation , 2011, Memetic Comput..

[26]  José L. Verdegay,et al.  Fuzzy termination criteria in Knapsack problem algorithms , 2000 .

[27]  Jesús García,et al.  A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms , 2007, GECCO '07.

[28]  C. A. Murthy,et al.  Variance as a Stopping Criterion for Genetic Algorithms with Elitist Model , 2012, Fundam. Informaticae.

[29]  Heike Trautmann,et al.  Online convergence detection for evolutionary multi-objective algorithms revisited , 2010, IEEE Congress on Evolutionary Computation.

[30]  Francisco V. Fernández,et al.  Stopping criteria in evolutionary algorithms for multi-objective performance optimization of integrated inductors , 2010, IEEE Congress on Evolutionary Computation.

[31]  Qingfu Zhang,et al.  Entropy-Based Termination Criterion for Multiobjective Evolutionary Algorithms , 2016, IEEE Transactions on Evolutionary Computation.

[32]  G. William Walster,et al.  On stopping criteria in verified nonlinear systems or optimization algorithms , 2000, TOMS.

[33]  Pietro Simone Oliveto,et al.  Analysis of diversity mechanisms for optimisation in dynamic environments with low frequencies of change , 2013, GECCO '13.

[34]  Jessica Andrea Carballido,et al.  On Stopping Criteria for Genetic Algorithms , 2004, SBIA.

[35]  N. Stander,et al.  A non‐dominance‐based online stopping criterion for multi‐objective evolutionary algorithms , 2010 .

[36]  Parag C. Pendharkar,et al.  A general steady state distribution based stopping criteria for finite length genetic algorithms , 2007, Eur. J. Oper. Res..

[37]  Heike Trautmann,et al.  Statistical Methods for Convergence Detection of Multi-Objective Evolutionary Algorithms , 2009, Evolutionary Computation.

[38]  Stephen Marshall,et al.  Convergence Criteria for Genetic Algorithms , 2000, SIAM J. Comput..

[39]  Tobias Wagner,et al.  Improving Robustness of Stopping Multi-objective Evolutionary Algorithms by Simultaneously Monitoring Objective and Decision Space , 2015, GECCO.

[40]  Hisao Ishibuchi,et al.  A Study on Performance Evaluation Ability of a Modified Inverted Generational Distance Indicator , 2015, GECCO.

[41]  Jesús García,et al.  Introducing a robust and efficient stopping criterion for MOEAs , 2010, IEEE Congress on Evolutionary Computation.

[42]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[43]  Marc Schoenauer,et al.  A Steady Performance Stopping Criterion for Pareto-based Evolutionary Algorithms , 2004 .

[44]  Jesús García,et al.  A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms , 2007, GECCO.

[45]  Gade Pandu Rangaiah,et al.  Evaluation of two termination criteria in evolutionary algorithms for multi-objective optimization of complex chemical processes , 2017 .

[46]  Gade Pandu Rangaiah,et al.  An improved multi-objective differential evolution with a termination criterion for optimizing chemical processes , 2013, Comput. Chem. Eng..

[47]  Heike Trautmann,et al.  OCD: Online Convergence Detection for Evolutionary Multi-Objective Algorithms Based on Statistical Testing , 2009, EMO.

[48]  Junbin Gao,et al.  Termination Criteria for Evolutionary Algorithms , 2009, GEM.

[49]  B. W. Wright,et al.  An improved optimization algorithm and a Bayes factor termination criterion for sequential projection pursuit , 2005 .

[50]  K. Zielinski,et al.  Stopping Criteria for Differential Evolution in Constrained Single-Objective Optimization , 2008 .

[51]  V. Padmanabhan,et al.  A novel termination criterion for optimization , 2005, Proceedings of the 2005, American Control Conference, 2005..

[52]  Gary J. Koehler,et al.  New stopping criterion for genetic algorithms , 2000, Eur. J. Oper. Res..

[53]  Rainer Laur,et al.  Stopping Criteria for a Constrained Single-Objective Particle Swarm Optimization Algorithm , 2007, Informatica.

[54]  Enrique Alba,et al.  Improving Diversity in Evolutionary Algorithms: New Best Solutions for Frequency Assignment , 2017, IEEE Transactions on Evolutionary Computation.

[55]  Wanru Gao,et al.  Runtime analysis for maximizing population diversity in single-objective optimization , 2014, GECCO.

[56]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[57]  Leyuan Shi,et al.  Stopping criterion for a simulation-based optimization method , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[58]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[59]  Emiliano Carreño Jara Multi-Objective Optimization by Using Evolutionary Algorithms: The $p$-Optimality Criteria , 2014, IEEE Trans. Evol. Comput..

[60]  Marcin Studniarski Stopping Criteria for Genetic Algorithms with Application to Multiobjective Optimization , 2010, PPSN.

[61]  Shalini Mahato,et al.  A faster genetic algorithm to solve Knapsack problem employing fuzzy technique , 2013, 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT).