When is scalar multiplication decidable?

Let $K$ be a subfield of $\mathbb{R}$. The theory of $\mathbb{R}$ viewed as an ordered $K$-vector space and expanded by a predicate for $\mathbb{Z}$ is decidable if and only if $K$ is a real quadratic field.

[1]  Philipp Hieronymi,et al.  EXPANSIONS OF THE ORDERED ADDITIVE GROUP OF REAL NUMBERS BY TWO DISCRETE SUBGROUPS , 2014, The Journal of Symbolic Logic.

[2]  Michael A. Tychonievich,et al.  Interpreting the projective hierarchy in expansions of the real line , 2012, 1203.6299.

[3]  C. Smorynski Logical Number Theory I , 1991 .

[4]  Julia Robinson,et al.  Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.

[5]  Lou van den Dries Dense pairs of o-minimal structures , 1998 .

[6]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[7]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.

[8]  Volker Weispfenning,et al.  Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.

[9]  A. Ostrowski Bemerkungen zur Theorie der Diophantischen Approximationen , 1922 .

[10]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[11]  Igor Pak,et al.  Presburger Arithmetic with algebraic scalar multiplications , 2018, Log. Methods Comput. Sci..

[12]  Pierre Wolper,et al.  On the Expressiveness of Real and Integer Arithmetic Automata (Extended Abstract) , 1998, ICALP.

[13]  Philipp Hieronymi Defining the set of integers in expansions of the real field by a closed discrete set , 2009, 0906.4972.

[14]  Philipp Hieronymi,et al.  Pairs of theories satisfying a Mordell–Lang condition , 2018, Fundamenta Mathematicae.

[15]  Pierre Wolper,et al.  An effective decision procedure for linear arithmetic over the integers and reals , 2005, TOCL.

[16]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[17]  Moshe Y. Vardi The Büchi Complementation Saga , 2007, STACS.

[18]  Christopher L. Miller Expansions of Dense Linear Orders with The Intermediate Value Property , 2001, J. Symb. Log..