When is scalar multiplication decidable?
暂无分享,去创建一个
[1] Philipp Hieronymi,et al. EXPANSIONS OF THE ORDERED ADDITIVE GROUP OF REAL NUMBERS BY TWO DISCRETE SUBGROUPS , 2014, The Journal of Symbolic Logic.
[2] Michael A. Tychonievich,et al. Interpreting the projective hierarchy in expansions of the real line , 2012, 1203.6299.
[3] C. Smorynski. Logical Number Theory I , 1991 .
[4] Julia Robinson,et al. Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.
[5] Lou van den Dries. Dense pairs of o-minimal structures , 1998 .
[6] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[7] R. McNaughton. Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.
[8] Volker Weispfenning,et al. Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.
[9] A. Ostrowski. Bemerkungen zur Theorie der Diophantischen Approximationen , 1922 .
[10] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[11] Igor Pak,et al. Presburger Arithmetic with algebraic scalar multiplications , 2018, Log. Methods Comput. Sci..
[12] Pierre Wolper,et al. On the Expressiveness of Real and Integer Arithmetic Automata (Extended Abstract) , 1998, ICALP.
[13] Philipp Hieronymi. Defining the set of integers in expansions of the real field by a closed discrete set , 2009, 0906.4972.
[14] Philipp Hieronymi,et al. Pairs of theories satisfying a Mordell–Lang condition , 2018, Fundamenta Mathematicae.
[15] Pierre Wolper,et al. An effective decision procedure for linear arithmetic over the integers and reals , 2005, TOCL.
[16] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[17] Moshe Y. Vardi. The Büchi Complementation Saga , 2007, STACS.
[18] Christopher L. Miller. Expansions of Dense Linear Orders with The Intermediate Value Property , 2001, J. Symb. Log..