An astrophysically motivated ranking criterion for low-latency electromagnetic follow-up of gravitational wave events

We investigate the properties of the host galaxies of compact binary mergers across cosmic time. To this end, we combine population synthesis simulations together with galaxy catalogues from the hydrodynamical cosmological simulation eagle to derive the properties of the host galaxies of binary neutron star (BNS), black hole-neutron star (BHNS), and binary black hole (BBH) mergers. Within this framework, we derive the host galaxy probability, i.e. the probability that a galaxy hosts a compact binary coalescence as a function of its stellar mass, star formation rate, Ks magnitude, and B magnitude. This quantity is particularly important for low-latency searches of gravitational wave (GW) sources as it provides a way to rank galaxies lying inside the credible region in the sky of a given GW detection, hence reducing the number of viable host candidates. Furthermore, even if no electromagnetic counterpart is detected, the proposed ranking criterion can still be used to classify the galaxies contained in the error box. Our results show that massive galaxies (or equivalently galaxies with a high luminosity in Ks band) have a higher probability of hosting BNS, BHNS, and BBH mergers. We provide the probabilities in a suitable format to be implemented in future low-latency searches.

[1]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[2]  P. K. Panda,et al.  GW190412: Observation of a binary-black-hole coalescence with asymmetric masses , 2020 .

[3]  Liang Gao,et al.  Simulating kilonovae in the ΛCDM universe , 2020, 2001.11299.

[4]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[5]  M. Fishbach,et al.  The Binary–Host Connection: Astrophysics of Gravitational-Wave Binaries from Host Galaxy Properties , 2020, The Astrophysical Journal.

[6]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[7]  N. Leroy,et al.  Optimizing gravitational waves follow-up using galaxies stellar mass , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[9]  Y. Bouffanais,et al.  Mass and star formation rate of the host galaxies of compact binary mergers across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  J. K. Blackburn,et al.  A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo , 2019, The Astrophysical Journal.

[11]  C. Baccigalupi,et al.  Merging Rates of Compact Binaries in Galaxies: Perspectives for Gravitational Wave Detections , 2019, Astrophysical Journal.

[12]  Gravitational Waves from Black Holes in Merging Ultra-Dwarf Galaxies , 2019, 1907.05361.

[13]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[14]  M. Mapelli,et al.  The host galaxies of double compact objects across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  Javed Rana,et al.  Galaxy-Targeting Approach Optimized for Finding the Radio Afterglows of Gravitational Wave Sources , 2019, 1904.07335.

[16]  B. S. Sathyaprakash,et al.  Deeper, Wider, Sharper: Next-Generation Ground-Based Gravitational-Wave Observations of Binary Black Holes. , 2019, 1903.09220.

[17]  M. Mapelli,et al.  Host galaxies of merging compact objects: mass, star formation rate, metallicity, and colours , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  B. Zackay,et al.  New search pipeline for compact binary mergers: Results for binary black holes in the first observing run of Advanced LIGO , 2019, Physical Review D.

[19]  B. Zackay,et al.  Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run , 2019, Physical Review D.

[20]  M. Mapelli,et al.  The properties of merging black holes and neutron stars across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  M. Mapelli,et al.  Evolution of dwarf galaxies hosting GW150914-like events , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  B. A. Boom,et al.  Edinburgh Research Explorer First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814 , 2018 .

[23]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[24]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[25]  ska,et al.  A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart , 2018, 1807.05667.

[26]  Mansi M. Kasliwal,et al.  Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields , 2017, The Astrophysical Journal.

[27]  M. Branchesi,et al.  The host galaxies of double compact objects merging in the local Universe , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  R. O’Shaughnessy,et al.  Spin orientations of merging black holes formed from the evolution of stellar binaries , 2018, Physical Review D.

[29]  E. Stanway,et al.  A consistent estimate for gravitational wave and electromagnetic transient rates , 2018, Monthly notices of the Royal Astronomical Society.

[30]  M. Mapelli,et al.  The cosmic merger rate of neutron stars and black holes , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  M. Mapelli,et al.  The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  C. Frenk,et al.  The star formation rate and stellar content contributions of morphological components in the EAGLE simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  S. Vitale,et al.  Measuring the Hubble Constant with Neutron Star Black Hole Mergers. , 2018, Physical review letters.

[34]  Rafael S. de Souza,et al.  GLADE: A galaxy catalogue for multimessenger searches in the advanced gravitational-wave detector era , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  M. Chan,et al.  Optimizing searches for electromagnetic counterparts of gravitational wave triggers , 2018, 1803.02255.

[36]  L. Singer,et al.  Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  M. Fishbach,et al.  A two per cent Hubble constant measurement from standard sirens within five years , 2017, Nature.

[38]  Youjun Lu,et al.  Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources , 2017, 1711.09190.

[39]  M. Mapelli,et al.  Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor , 2017, 1711.03556.

[40]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[41]  M. Fishbach,et al.  A 2 per cent Hubble constant measurement from standard sirens within 5 years , 2018 .

[42]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[43]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[44]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[45]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[46]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[47]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[48]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[49]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[50]  Columbia,et al.  Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory , 2017, 1710.05842.

[51]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[52]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta , 2017, 1710.05457.

[53]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet , 2017, 1710.05431.

[54]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[55]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[56]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[57]  R. Nichol,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Dark Energy Camera Discovery of the Optical Counterpart , 2017, 1710.05459.

[58]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[59]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[60]  M. Mapelli,et al.  The cosmic merger rate of stellar black hole binaries from the Illustris simulation , 2017, 1708.05722.

[61]  M. Mapelli,et al.  Very massive stars, pair-instability supernovae and intermediate-mass black holes with the sevn code , 2017, 1706.06109.

[62]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[63]  M. Mapelli,et al.  The formation and coalescence sites of the first gravitational wave events , 2017, 1705.06781.

[64]  R. Bower,et al.  Galaxy metallicity scaling relations in the EAGLE simulations , 2017, 1704.00006.

[65]  R. O’Shaughnessy,et al.  The effects of host galaxy properties on merging compact binaries detectable by LIGO , 2016, 1609.06715.

[66]  W. F. Ong,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. II. UV, Optical, and Near-IR Light Curves and Comparison to Kilonova Models , 2017 .

[67]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[68]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[69]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[70]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[71]  P. Hopkins,et al.  When and where did GW150914 form , 2016, 1605.08783.

[72]  J. Silk,et al.  Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background , 2016, 1604.04288.

[73]  P. Graff,et al.  GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP , 2016, 1603.07333.

[74]  J. Heyl,et al.  Using the 2-MASS photometric redshift survey to optimize LIGO follow-up observations , 2016, 1602.07710.

[75]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[76]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[77]  Mansi M. Kasliwal,et al.  GALAXY STRATEGY FOR LIGO-VIRGO GRAVITATIONAL WAVE COUNTERPART SEARCHES , 2015, 1508.03608.

[78]  L. Girardi,et al.  PARSEC evolutionary tracks of massive stars up to 350 M ☉ at metallicities 0.0001 ≤ Z ≤ 0.04 , 2015, 1506.01681.

[79]  Durham,et al.  Colours and luminosities of z = 0.1 galaxies in the eagle simulation , 2015, 1504.04374.

[80]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[81]  C. Frenk,et al.  Evolution of galaxy stellar masses and star formation rates in the eagle simulations , 2014, 1410.3485.

[82]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[83]  V. Springel,et al.  The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation , 2014, 1409.0009.

[84]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[85]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[86]  Ik Siong Heng,et al.  A BAYESIAN APPROACH TO MULTI-MESSENGER ASTRONOMY: IDENTIFICATION OF GRAVITATIONAL-WAVE HOST GALAXIES , 2014, 1406.1544.

[87]  Alexander H. Nitz,et al.  Implementing a search for aligned-spin neutron star - black hole systems with advanced ground based gravitational wave detectors , 2014, 1405.6731.

[88]  Ilya Mandel,et al.  UTILITY OF GALAXY CATALOGS FOR FOLLOWING UP GRAVITATIONAL WAVES FROM BINARY NEUTRON STAR MERGERS WITH WIDE-FIELD TELESCOPES , 2013, 1312.2077.

[89]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[90]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[91]  S. E. Persson,et al.  DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS , 2013, 1302.3221.

[92]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[93]  W. D. Pozzo Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers , 2011, 1108.1317.

[94]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[95]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[96]  L. Nuttall,et al.  Identifying the host galaxy of gravitational wave signals , 2010, 1009.1791.

[97]  E. Berger,et al.  THE STELLAR AGES AND MASSES OF SHORT GAMMA-RAY BURST HOST GALAXIES: INVESTIGATING THE PROGENITOR DELAY TIME DISTRIBUTION AND THE ROLE OF MASS AND STAR FORMATION IN THE SHORT GAMMA-RAY BURST RATE , 2010, 1009.1147.

[98]  Los Alamos National Laboratory,et al.  BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES , 2009, 0908.3635.

[99]  A. D. Koter,et al.  On the metallicity dependence of Wolf-Rayet winds , 2005, astro-ph/0507352.

[100]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[101]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[102]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[103]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[104]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.