Progress in foam forming technology

[1]  A. Phillion,et al.  Ultra-lightweight paper foams: processing and properties , 2014, Cellulose.

[2]  J. H. Hubbell,et al.  Photon mass attenuation and energy-absorption coefficients , 1982 .

[3]  Toshiharu Enomae,et al.  The effect of di(oleamidoethyl)ammonium salt addition at the wet-end on drainage and sheet properties , 2005 .

[4]  J. I. Hoffman,et al.  A Viscometric Study of the Micelles of Sodium Dodecyl Sulfate in Dilute Solutions , 1952 .

[5]  Antti I. Koponen,et al.  Foam forming of long fibers , 2016 .

[6]  D. Moore,et al.  Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing , 2004, Dermatologic therapy.

[7]  Guangqian Wang,et al.  LIQUID FOAM DRAINAGE: AN OVERVIEW , 2008 .

[8]  Antti I. Koponen,et al.  The effect of in-line foam generation on foam quality and sheet formation in foam forming , 2018, Nordic Pulp & Paper Research Journal.

[9]  T. Hjelt,et al.  Bubble size and air content of wet fibre foams in axial mixing with macro-instabilities , 2013 .

[10]  K. Kinnunen,et al.  Foam forming revisited. Part II. Effect of surfactant on the properties of foam-formed paper products , 2014 .

[11]  T. Hjelt,et al.  Response of wet foam to fibre mixing , 2015 .

[12]  T. Hjelt,et al.  Potential of foam-laid forming technology in paper applications , 2013 .

[13]  J. B. Lawson,et al.  Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries , 1985 .

[14]  S. Marze,et al.  Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering , 2008 .

[15]  G. Jameson,et al.  Foaming and gas dispersion properties of non-ionic frothers in the presence of hydrophobized submicron particles , 2014 .

[16]  Use of papermaking pulps in foam-formed thermal insulation materials , 2017 .

[17]  K. Kinnunen,et al.  Foam forming revisited Part I. Foaming behaviour of fibre-surfactant systems , 2014 .

[18]  Hannes Vomhoff,et al.  Dewatering mechanisms and their influence on suction box dewatering processes – A literature review , 2008 .

[19]  A. Al-Qararah Aqueous foam as the carrier phase in the deposition of fibre networks , 2015 .

[20]  A. Saint-Jalmes,et al.  Physical chemistry in foam drainage and coarsening. , 2006, Soft matter.

[21]  Jani Lehmonen,et al.  PAPER PHYSICS: Determinations of bubble size distribution of foam-fibre mixture using circular hough transform , 2012 .

[22]  P. Claesson,et al.  Aqueous foams stabilized by n-dodecyl-β-D-maltoside, hexaethyleneglycol monododecyl ether, and their 1 : 1 mixture , 2009 .

[23]  L. Bergström,et al.  Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. , 2013, Biomacromolecules.

[24]  D. Durian,et al.  Vanishing elasticity for wet foams: Equivalence with emulsions and role of polydispersity , 1999 .

[25]  P. Gennes The Physics Of Foams , 1999 .

[26]  Antti I. Koponen,et al.  Experimental results on the flow rheology of fiber-laden aqueous foams , 2015 .

[27]  A. D. Kaasjager,et al.  Bubble Size Distribution During the Application of Foam to Fabrics and Its Effects on Product Quality , 1995 .

[28]  T. Hjelt,et al.  A unique microstructure of the fiber networks deposited from foam–fiber suspensions , 2015 .

[29]  P. Lu,et al.  Comparative study of ultra-lightweight pulp foams obtained from various fibers and reinforced by MFC. , 2018, Carbohydrate polymers.

[30]  B. Ramaswamy,et al.  A study on recovery of oil from sludge containing oil using froth flotation. , 2007, Journal of environmental management.

[31]  M. Hubbe,et al.  Wet-Laid Nonwovens Manufacture – Chemical Approaches Using Synthetic and Cellulosic Fibers , 2016 .