Coordinate conditions and field equations for pure composite gravity
暂无分享,去创建一个
[1] H. C. Öttinger. Hamiltonian formulation of a class of constrained fourth-order differential equations in the Ostrogradsky framework , 2018, Journal of Physics Communications.
[2] Richard Woodard,et al. Ostrogradsky's theorem on Hamiltonian instability , 2015, Scholarpedia.
[3] L. Heisenberg,et al. The Geometrical Trinity of Gravity , 2019, Universe.
[4] H. C. Öttinger. Composite higher derivative theory of gravity , 2020 .
[5] A. Salvio. Metastability in quadratic gravity , 2019, Physical Review D.
[6] T. Chen,et al. Higher derivative theories with constraints : Exorcising Ostrogradski's Ghost , 2012, 1209.0583.
[7] K. Stelle. Classical gravity with higher derivatives , 1978 .
[8] Dennis Nemeschansky,et al. A BRST PRIMER , 1988 .
[9] Daniel Becker,et al. On avoiding Ostrogradski instabilities within Asymptotic Safety , 2017, Journal of High Energy Physics.
[10] H. C. Ottinger. BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space , 2018, 1803.00383.
[11] J. Zinn-Justin,et al. Renormalization of Gauge Theories , 2018, Quantum Field Theory.
[12] Paul Adrien Maurice Dirac. Generalized Hamiltonian dynamics , 1950 .
[13] H. C. Öttinger. Mathematical structure and physical content of composite gravity in weak-field approximation , 2020, 2005.14474.
[14] G. Sardanashvily,et al. The gauge treatment of gravity , 1983 .
[16] Rvovv Utivama. Invariant Theoretical Interpretation of Interaction , 2011 .
[17] H. C. Öttinger,et al. The dissipative approach to quantum field theory: conceptual foundations and ontological implications , 2020, European Journal for Philosophy of Science.
[18] Marco Giovanelli. Correction to: Nothing but coincidences: the point-coincidence and Einstein’s struggle with the meaning of coordinates in physics , 2021, European Journal for Philosophy of Science.
[19] S. Capozziello,et al. Extended Theories of Gravity , 2011, 1108.6266.
[20] M. Ostrogradsky. Mémoires sur les équations différentielles, relatives au problème des isopérimètres , 1850 .
[21] R. L. Mills,et al. Conservation of Isotopic Spin and Isotopic Gauge Invariance , 1954 .
[22] N. Krasnikov. Nonlocal gauge theories , 1987 .
[23] I. Tyutin. Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism , 2008, 0812.0580.
[24] M. Raidal,et al. On the quantisation of complex higher derivative theories and avoiding the Ostrogradsky ghost , 2016, 1611.03498.
[25] Chen Ning Yang,et al. Integral Formalism for Gauge Fields , 1974 .
[26] M. Peskin,et al. An Introduction To Quantum Field Theory , 1995 .
[27] The geometry and thermodynamics of dissipative quantum systems , 2010, 1002.2938.
[28] H. C. Öttinger,et al. Natural approach to quantum dissipation , 2015 .
[29] K. Stelle. Renormalization of Higher Derivative Quantum Gravity , 1977 .
[30] Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .
[31] Paul Adrien Maurice Dirac,et al. The theory of gravitation in Hamiltonian form , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[32] Grosse-Knetter,et al. Effective Lagrangians with higher derivatives and equations of motion. , 1994, Physical review. D, Particles and fields.