Coordinate conditions and field equations for pure composite gravity

Whenever an alternative theory of gravity is formulated in a background Minkowski space, the conditions characterizing admissible coordinate systems, in which the alternative theory of gravity may be applied, play an important role. We here propose Lorentz covariant coordinate conditions for the composite theory of pure gravity developed from the Yang-Mills theory based on the Lorentz group, thereby completing this previously proposed higher derivative theory of gravity. The physically relevant static isotropic solutions are determined by various methods, the high-precision predictions of general relativity are reproduced, and an exact black-hole solution with mildly singular behavior is found.

[1]  H. C. Öttinger Hamiltonian formulation of a class of constrained fourth-order differential equations in the Ostrogradsky framework , 2018, Journal of Physics Communications.

[2]  Richard Woodard,et al.  Ostrogradsky's theorem on Hamiltonian instability , 2015, Scholarpedia.

[3]  L. Heisenberg,et al.  The Geometrical Trinity of Gravity , 2019, Universe.

[4]  H. C. Öttinger Composite higher derivative theory of gravity , 2020 .

[5]  A. Salvio Metastability in quadratic gravity , 2019, Physical Review D.

[6]  T. Chen,et al.  Higher derivative theories with constraints : Exorcising Ostrogradski's Ghost , 2012, 1209.0583.

[7]  K. Stelle Classical gravity with higher derivatives , 1978 .

[8]  Dennis Nemeschansky,et al.  A BRST PRIMER , 1988 .

[9]  Daniel Becker,et al.  On avoiding Ostrogradski instabilities within Asymptotic Safety , 2017, Journal of High Energy Physics.

[10]  H. C. Ottinger BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space , 2018, 1803.00383.

[11]  J. Zinn-Justin,et al.  Renormalization of Gauge Theories , 2018, Quantum Field Theory.

[12]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[13]  H. C. Öttinger Mathematical structure and physical content of composite gravity in weak-field approximation , 2020, 2005.14474.

[14]  G. Sardanashvily,et al.  The gauge treatment of gravity , 1983 .

[16]  Rvovv Utivama Invariant Theoretical Interpretation of Interaction , 2011 .

[17]  H. C. Öttinger,et al.  The dissipative approach to quantum field theory: conceptual foundations and ontological implications , 2020, European Journal for Philosophy of Science.

[18]  Marco Giovanelli Correction to: Nothing but coincidences: the point-coincidence and Einstein’s struggle with the meaning of coordinates in physics , 2021, European Journal for Philosophy of Science.

[19]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[20]  M. Ostrogradsky Mémoires sur les équations différentielles, relatives au problème des isopérimètres , 1850 .

[21]  R. L. Mills,et al.  Conservation of Isotopic Spin and Isotopic Gauge Invariance , 1954 .

[22]  N. Krasnikov Nonlocal gauge theories , 1987 .

[23]  I. Tyutin Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism , 2008, 0812.0580.

[24]  M. Raidal,et al.  On the quantisation of complex higher derivative theories and avoiding the Ostrogradsky ghost , 2016, 1611.03498.

[25]  Chen Ning Yang,et al.  Integral Formalism for Gauge Fields , 1974 .

[26]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[27]  The geometry and thermodynamics of dissipative quantum systems , 2010, 1002.2938.

[28]  H. C. Öttinger,et al.  Natural approach to quantum dissipation , 2015 .

[29]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[30]  Steven Weinberg Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[31]  Paul Adrien Maurice Dirac,et al.  The theory of gravitation in Hamiltonian form , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Grosse-Knetter,et al.  Effective Lagrangians with higher derivatives and equations of motion. , 1994, Physical review. D, Particles and fields.