Spatial and Fourier-space distribution of confined optical Tamm modes

In this paper, we characterize the electric field distribution of confined optical modes in a 0D Tamm structure, consisting in a metallic disk deposited on a Bragg mirror. The modes are probed at room temperature, through the fluorescence of semiconductor colloidal nanocrystals. We perform a combined analysis of the resonant modes distribution in both direct space and Fourier space and show, in good agreement with numerical simulations, that a subportion of the structure will radiate with a different angular distribution depending on its position. Such analysis is shown to probe the gradient of the phase of the confined optical modes.

[1]  Jean-Jacques Greffet,et al.  Polarization-Controlled Confined Tamm Plasmon Lasers , 2015 .

[2]  M. Kamp,et al.  Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode , 2015, 1501.07453.

[3]  J. Rarity,et al.  Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation , 2014 .

[4]  J. Lakowicz,et al.  Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure. , 2014, Analytical biochemistry.

[5]  A. Maître,et al.  Determination of the Surface Plasmon Polariton Extraction Efficiency from a Self-Assembled Plasmonic Crystal , 2013, Plasmonics.

[6]  A. Lemaître,et al.  Confined Tamm plasmon lasers. , 2013, Nano letters.

[7]  Jing Feng,et al.  Optical Tamm states enhanced broad-band absorption of organic solar cells , 2012 .

[8]  D. Bouwmeester,et al.  Optical modes in oxide-apertured micropillar cavities. , 2012, Optics letters.

[9]  A. Lemaître,et al.  Single photon source using confined Tamm plasmon modes , 2012 .

[10]  A. Lemaître,et al.  Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. , 2011, Physical review letters.

[11]  A. Maître,et al.  Isotropic broadband absorption by a macroscopic self-organized plasmonic crystal. , 2011, Optics express.

[12]  S. Reitzenstein,et al.  Microcavity mode structure investigations with high spatial resolution , 2011 .

[13]  W. Vos,et al.  Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam , 2010, 1007.0344.

[14]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[15]  J. M. Chamberlain,et al.  Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror , 2007 .

[16]  M. Karl,et al.  Localized and delocalized modes in coupled optical micropillar cavities. , 2007, Optics express.

[17]  I. Shelykh,et al.  Lossless interface modes at the boundary between two periodic dielectric structures , 2005 .

[18]  H. Rigneault,et al.  Far-field radiation from quantum boxes located in pillar microcavities. , 2001, Optics letters.

[19]  V. Kulakovskii,et al.  Angle dependence of the spontaneous emission from confined optical modes in photonic dots , 1999 .

[20]  Chalmers Publication Library Copyright Notice , 2022 .