Drosophila Brainbow: a recombinase-based fluorescent labeling technique to subdivide neural expression patterns

We developed a multicolor neuron labeling technique in Drosophila melanogaster that combines the power to specifically target different neural populations with the label diversity provided by stochastic color choice. This adaptation of vertebrate Brainbow uses recombination to select one of three epitope-tagged proteins detectable by immunofluorescence. Two copies of this construct yield six bright, separable colors. We used Drosophila Brainbow to study the innervation patterns of multiple antennal lobe projection neuron lineages in the same preparation and to observe the relative trajectories of individual aminergic neurons. Nerve bundles, and even individual neurites hundreds of micrometers long, can be followed with definitive color labeling. We traced motor neurons in the subesophageal ganglion and correlated them to neuromuscular junctions to identify their specific proboscis muscle targets. The ability to independently visualize multiple lineage or neuron projections in the same preparation greatly advances the goal of mapping how neurons connect into circuits.

[1]  J. C. Li,et al.  Development in DROSOPHILA MELANOGASTER. , 1927, Genetics.

[2]  M. Demerec,et al.  Biology of Drosophila , 1950 .

[3]  M. Lings,et al.  Articles , 1967, Soil Science Society of America Journal.

[4]  R N Singh,et al.  Neuroarchitecture of the tritocerebrum of Drosophila melanogaster , 1994, The Journal of comparative neurology.

[5]  Y. Shiio,et al.  Epitope tagging. , 1995, Methods in enzymology.

[6]  S. Kain,et al.  An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. , 1996, Biochemical and biophysical research communications.

[7]  Tim Tully,et al.  Associative Learning Disrupted by Impaired Gs Signaling in Drosophila Mushroom Bodies , 1996, Science.

[8]  D. Hartl,et al.  Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. , 1996, Genetics.

[9]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[10]  R. Stocker,et al.  Drosophila P[Gal4] lines reveal that motor neurons involved in feeding persist through metamorphosis. , 1998, Journal of neurobiology.

[11]  L. Luo,et al.  Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. , 1999, Development.

[12]  R. Haugland,et al.  Alexa Dyes, a Series of New Fluorescent Dyes that Yield Exceptionally Bright, Photostable Conjugates , 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[13]  D. Hartl,et al.  Application of Cre/loxP in Drosophila. Site-specific recombination and transgene coplacement. , 2000, Methods in molecular biology.

[14]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[15]  C. Lehner,et al.  Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen-dependent activity regulation , 2001, Development Genes and Evolution.

[16]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[17]  Takeharu Nagai,et al.  Shift anticipated in DNA microarray market , 2002, Nature Biotechnology.

[18]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[19]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[20]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[21]  R. Tsien,et al.  Evolution of new nonantibody proteins via iterative somatic hypermutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[23]  Handling three regulatory elements in one transgene: combined use of cre-lox, FLP-FRT, and I-Scel recombination systems. , 2005, BioTechniques.

[24]  Barry J. Dickson,et al.  fruitless Splicing Specifies Male Courtship Behavior in Drosophila , 2005, Cell.

[25]  Devanand S. Manoli,et al.  Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour , 2005, Nature.

[26]  J. Hirsh,et al.  Two Functional but Noncomplementing Drosophila Tyrosine Decarboxylase Genes , 2005, Journal of Biological Chemistry.

[27]  Robert E Campbell,et al.  Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. , 2006, The Biochemical journal.

[28]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[29]  L. Luo,et al.  A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining , 2006, Nature Protocols.

[30]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[31]  Robert E Campbell,et al.  Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. , 2007, Biochemistry.

[32]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[33]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[34]  Volker Hartenstein,et al.  Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. , 2007, Developmental biology.

[35]  G. Technau,et al.  Brain development in drosophila melanogaster , 2008 .

[36]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[37]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[38]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[39]  Fruitless and Doublesex Coordinate to Generate Male-Specific Neurons that Can Initiate Courtship , 2008, Neuron.

[40]  Kei Ito,et al.  Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage , 2008, Development.

[41]  Kei Ito,et al.  Clonal unit architecture of the adult fly brain. , 2008, Advances in experimental medicine and biology.

[42]  L. Luo,et al.  Octopamine fuels fighting flies , 2008, Nature Neuroscience.

[43]  Kristin L. Hazelwood,et al.  Far-red fluorescent tags for protein imaging in living tissues. , 2009, The Biochemical journal.

[44]  Michael Z. Lin,et al.  Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. , 2009, Chemistry & biology.

[45]  Julie H. Simpson,et al.  Mapping and manipulating neural circuits in the fly brain. , 2009, Advances in genetics.

[46]  Nicolas Y. Masse,et al.  Olfactory Information Processing in Drosophila , 2009, Current Biology.

[47]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[48]  Tzumin Lee,et al.  Twin-Spot MARCM to reveal developmental origin and identity of neurons , 2009, Nature Neuroscience.

[49]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[50]  R. Yagi,et al.  Refined LexA transactivators and their use in combination with the Drosophila Gal4 system , 2010, Proceedings of the National Academy of Sciences.

[51]  K. Isono,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Insect Taste Receptors Evolution of Insect Gustatory Receptors , 2022 .

[52]  H. Tanimoto,et al.  Cellular configuration of single octopamine neurons in Drosophila , 2010, The Journal of comparative neurology.

[53]  Hugo J. Bellen,et al.  100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future , 2010, Nature Reviews Neuroscience.

[54]  Jai Y. Yu,et al.  Sexual Dimorphism in the Fly Brain , 2010, Current Biology.

[55]  Jai Y. Yu,et al.  Cellular Organization of the Neural Circuit that Drives Drosophila Courtship Behavior , 2010, Current Biology.