Thermo-elastic optical coherence tomography.

The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

[1]  Gijs van Soest,et al.  Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. , 2010, Journal of biomedical optics.

[2]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[3]  G. Hüttmann,et al.  In vivo optical imaging of physiological responses to photostimulation in human photoreceptors , 2016, Proceedings of the National Academy of Sciences.

[4]  Joseph M. Schmitt,et al.  Optical coherence tomography (OCT): a review , 1999 .

[5]  Michael C. Kolios,et al.  Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties. , 2010, Journal of biomedical optics.

[6]  R. Leitgeb,et al.  Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging. , 2012, Optics letters.

[7]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[8]  Matthew O'Donnell,et al.  Optical coherence elastography based on high speed imaging of single-hot laser-induced acoustic waves at 16 kHz frame rate , 2016, SPIE BiOS.

[9]  M. V. van Gemert,et al.  Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.

[10]  Paulino Vacas-Jacques,et al.  Optical coherence tomography--near infrared spectroscopy system and catheter for intravascular imaging. , 2013, Optics express.

[11]  Kirill V. Larin,et al.  A three dimensional solution for laser-induced thermoelastic deformation of the layered medium , 2016, SPIE BiOS.

[12]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[13]  Melissa C Skala,et al.  Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. , 2008, Nano letters.

[14]  Gijs van Soest,et al.  Photoacoustic imaging of human coronary atherosclerosis in two spectral bands , 2013, Photoacoustics.

[15]  R. John,et al.  Dynamic spectral-domain optical coherence elastography for tissue characterization , 2010, Optics express.

[16]  J. Duker,et al.  Photothermal Optical Lock-in Optical Coherence Tomography for in Vivo Imaging References and Links , 2022 .

[17]  Kelsey M. Kennedy,et al.  A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Robert A. McLaughlin,et al.  Strain estimation in phase-sensitive optical coherence elastography , 2012, Biomedical optics express.

[19]  Nicolas Godbout,et al.  Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography. , 2013, Optics letters.

[20]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[21]  Frits Mastik,et al.  Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. , 2017, Biomedical optics express.

[22]  Wiendelt Steenbergen,et al.  Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. , 2003, Physics in medicine and biology.

[23]  J. Fujimoto,et al.  Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues , 2004, Heart.

[24]  A. Fercher,et al.  In vivo optical coherence tomography. , 1993, American journal of ophthalmology.

[25]  D. Adler,et al.  Extended coherence length Fourier domain mode locked lasers at 1310 nm. , 2011, Optics express.

[26]  C. Compton,et al.  High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. , 2000, Gastrointestinal endoscopy.

[27]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[28]  C K Hitzenberger,et al.  Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. , 2000, Optics letters.

[29]  Alexander W. Schill,et al.  Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second. , 2015, Optics letters.

[30]  J. Fujimoto,et al.  Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells. , 2010, Optics letters.

[31]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[32]  Andrew K Dunn,et al.  Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood oxygen saturation , 2013, Journal of biomedical optics.

[33]  I Itzkan,et al.  Laser-induced thermoelastic deformation: a three-dimensional solution and its application to the ablation of biological tissue. , 1994, Medical physics.

[34]  T. Milner,et al.  Thermoelastic displacement measured by DP-OCT for detecting vulnerable plaques. , 2014, Biomedical optics express.

[35]  Vasan Venugopalan,et al.  Optoacoustic determination of optical attenuation depth using interferometric detection. , 2003, Journal of biomedical optics.

[36]  I Itzkan,et al.  The thermoelastic basis of short pulsed laser ablation of biological tissue. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Lihong V. Wang,et al.  Photoacoustic tomography: principles and advances. , 2016, Electromagnetic waves.

[38]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[39]  Travis A. Meyer,et al.  In vivo photothermal optical coherence tomography of gold nanorod contrast agents , 2012, Biomedical optics express.

[40]  Zach DeVito,et al.  Opt , 2017 .

[41]  Wolfgang Wieser,et al.  High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. , 2014, Biomedical optics express.

[42]  Lihong V. Wang,et al.  Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs , 2012, Science.

[43]  R Birngruber,et al.  Optical coherence tomography of the human skin. , 1997, Journal of the American Academy of Dermatology.

[44]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.