A new algorithm for solving some mechanical problems

This paper explores the utility of a discrete singular convolution algorithm for solving certain mechanical problems. Benchmark mechanical systems, including plate vibrations and incompressible flows, are employed to illustrate the robustness and to test accuracy of the present algorithm. Numerical results indicate that the present approach is very accurate, efficient and reliable for solving the aforementioned problems.

[1]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[2]  J. N. Reddy,et al.  Energy and variational methods in applied mechanics , 1984 .

[3]  B. Fornberg On a Fourier method for the integration of hyperbolic equations , 1975 .

[4]  Y. K. Cheung,et al.  Flexural free vibrations of rectangular plates with complex support conditions , 1984 .

[5]  Bernie D. Shizgal,et al.  A Chebyshev pseudospectral multi-domain method for steady flow past a cylinder up to Re = 150 , 1994 .

[6]  K. M. Liew,et al.  Vibration Analysis of Plates by the pb-2 Rayleigh-Ritz Method: Mixed Boundary Conditions,Reentrant Corners, and Internal Curved Supports , 1992 .

[7]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[8]  John Z. Lou,et al.  A Parallel Incompressible Flow Solver Package with a Parallel Multigrid Elliptic Kernel , 1996 .

[9]  Liwen Qian,et al.  A Note on Regularized Shannon's Sampling Formulae , 2000 .

[10]  Katsutoshi Okazaki,et al.  Vibrations of a Circular Plate Having Partly Clamped or Partly Simply Supported Boundary , 1976 .

[11]  G. Wei Quasi wavelets and quasi interpolating wavelets , 1998 .

[12]  Steven A. Orszag,et al.  Comparison of Pseudospectral and Spectral Approximation , 1972 .

[13]  K. M. Liew,et al.  On the Use of the Substructure Method for Vibration Analysis of Rectangular Plates with Discontinuous Boundary Conditions , 1993 .

[14]  H. Saunders,et al.  Book Reviews : INTRODUCTION TO THE FINITE ELEMENT METHOD C. S. Desai and J. F. Abel Van Nostrand Rheinhold Co. , New York, N. Y. (1972) , 1975 .

[15]  R. T. Fenner Finite Element Methods For Engineers , 1975 .

[16]  F. L. DiMaggio Literature Review : EIGENVALUE PROBLEMS OF RECTANGULAR PLATES WITH MIXED END CONDITIONS Keer, L. M. and Stahl, B. J. Appl. Mech. Trans. ASME 39(2), 513-520 (June 1972) 22 refs Refer to Abstract No. 72-1512 , 1973 .

[17]  Guo-Wei Wei,et al.  Lagrange Distributed Approximating Functionals , 1997 .

[18]  Singiresu S. Rao The finite element method in engineering , 1982 .

[19]  Guo-Wei Wei,et al.  Solving quantum eigenvalue problems by discrete singular convolution , 2000 .

[20]  Yoshihiro Narita,et al.  Application of a series-type method to vibration of orthotropic rectangular plates with mixed boundary conditions , 1981 .

[21]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[22]  M. K. Lim,et al.  On The Use Of The Domain Decomposition Method For Vibration Of Symmetric Laminates Having Discontinuities At The Same Edge , 1994 .

[23]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[24]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .

[25]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[26]  C. Chia Non-linear vibration of anisotropic rectangular plates with non-uniform edge constraints , 1985 .

[27]  C. C. Bartlett THE VIBRATION AND BUCKLING OF A CIRCULAR PLATE CLAMPED ON PARTOF ITS BOUNDARY AND SIMPLY SUPPORTED ON THE REMAINDER , 1963 .

[28]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[29]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[30]  Bhaskardev Nath,et al.  Fundamentals of finite elements for engineers , 1974 .

[31]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.

[32]  E Weinan,et al.  A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow , 1992 .

[33]  T. Mizusawa,et al.  Vibration and buckling of rectangular plates with nonuniform elastic constraints in rotation , 1987 .