On the Iterated Biclique Operator

A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by , is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever ( for some m, or for some k and , respectively). Given a graph G, the iterated biclique graph of G, denoted by , is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 181–190, 2013

[1]  Miguel A. Pizaña,et al.  Dismantlings and iterated clique graphs , 2004, Discret. Math..

[2]  Hans-Jürgen Bandelt,et al.  Clique graphs and Helly graphs , 1991, J. Comb. Theory B.

[3]  Célia Picinin de Mello,et al.  The clique operator on cographs and serial graphs , 2004, Discret. Math..

[4]  Jayme Luiz Szwarcfiter,et al.  Biclique graphs and biclique matrices , 2010 .

[5]  F. Larrión,et al.  A Family of Clique Divergent Graphs with Linear Growth , 1997, Graphs Comb..

[6]  Edward Szpilrajn-Marczewski Sur deux propriétés des classes d'ensembles , 1945 .

[7]  S. Hedetniemi,et al.  Line graphs of triangleless graphs and iterated clique graphs , 1972 .

[8]  Miguel A. Pizaña The icosahedron is clique divergent , 2003, Discret. Math..

[9]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[10]  Fred S. Roberts,et al.  A Characterization of Clique Graphs. , 1971 .

[11]  Celina M. H. de Figueiredo,et al.  On the generation of bicliques of a graph , 2007, Discret. Appl. Math..

[12]  R. Hamelink A partial characterization of clique graphs , 1968 .

[13]  Celina M. H. de Figueiredo,et al.  Generating bicliques of a graph in lexicographic order , 2005, Theor. Comput. Sci..

[14]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[15]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[16]  Francisco Larrión,et al.  Locally C6 graphs are clique divergent , 2000, Discret. Math..

[17]  Celina M. H. de Figueiredo,et al.  Clique Graph Recognition Is NP-Complete , 2006, WG.

[18]  Philippe G. H. Lehot An Optimal Algorithm to Detect a Line Graph and Output Its Root Graph , 1974, JACM.

[19]  Miguel A. Pizaña,et al.  Equivariant collapses and the homotopy type of iterated clique graphs , 2008, Discret. Math..

[20]  Miguel A. Pizaña,et al.  Whitney triangulations, local girth and iterated clique graphs , 2002, Discret. Math..

[21]  Célia Picinin de Mello,et al.  The clique operator on graphs with few P4's , 2006, Discret. Appl. Math..

[22]  F. Escalante Über iterierte Clique-Graphen , 1973 .