Models for phase separation and their mathematics.

The gradientflow approach to theCahn-Hilliard andphase eldmodels is developed, and some basic mathematical properties of the models, especially phase separation phenomena, are reviewed.

[1]  A. Umantsev Thermodynamic stability of phases and transition kinetics under adiabatic conditions , 1992 .

[2]  M. Gurtin On phase transitions with bulk, interfacial, and boundary Energy , 1986 .

[3]  Peter W. Bates,et al.  Metastable Patterns for the Cahn-Hilliard Equation: Part II. Layer Dynamics and Slow Invariant Manifold , 1995 .

[4]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[5]  Roger Temam,et al.  Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .

[6]  P. Bates,et al.  Equilibria with Many Nuclei for the Cahn–Hilliard Equation , 2000 .

[7]  N. Alikakos,et al.  Slow dynamics for the cahn-hilliard equation in higher space dimension part i: spectral estimates ∗ , 1994 .

[8]  N. Alikakos,et al.  Finite dimensional dynamics and interfaces intersecting the boundary: Equilibria and the quasi-invariant manifold , 1996 .

[9]  N. Alikakos,et al.  Slow Dynamics for the Cahn‐Hilliard Equation in Higher Space Dimensions: The Motion of Bubbles , 1998 .

[10]  Phase-transition mechanisms for the phase-field model under internal heating. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[11]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[12]  J. Furter,et al.  On a stationary state characterization of transition from spinodal decomposition to nucleation behaviour in the Cahn-Hilliard model of phase separation , 1989 .

[13]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[14]  E.,et al.  ON THE TWO-PHASE STEFAN PROBLEM WITH INTERFACIAL ENERGY AND ENTROPY % , 2022 .

[15]  V. Skripov,et al.  Spinodal decomposition (phase transitions via unstable states) , 1979 .

[16]  E. Coutsias,et al.  The aging of nuclei in a binary mixture , 1984 .

[17]  Collins,et al.  Diffuse interface model of diffusion-limited crystal growth. , 1985, Physical review. B, Condensed matter.

[18]  L. Tartar,et al.  The gradient theory of phase transitions for systems with two potential wells , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  Fife,et al.  Phase-field methods for interfacial boundaries. , 1986, Physical review. B, Condensed matter.

[20]  L. Bronsard,et al.  Slow motion in the gradient theory of phase transitions via energy and spectrum , 1997 .

[21]  Stephan Luckhaus,et al.  The Gibbs-Thompson relation within the gradient theory of phase transitions , 1989 .

[22]  James S. Langer,et al.  Theory of the condensation point , 1967 .

[23]  Morton E. Gurtin,et al.  On the structure of equilibrium phase transitions within the gradient theory of fluids , 1988 .

[24]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[25]  Thomas Wanner,et al.  Spinodal Decomposition for the¶Cahn-Hilliard Equation in Higher Dimensions:¶Nonlinear Dynamics , 2000 .

[26]  George J. Fix,et al.  Phase field methods for free boundary problems , 1982 .

[27]  P. Bates,et al.  Metastable Patterns for the Cahn-Hilliard Equation, Part I , 1994 .

[28]  P. Fife,et al.  The phase-field description of mushy zones , 1989 .

[29]  J. Taylor,et al.  Overview no. 113 surface motion by surface diffusion , 1994 .

[30]  James D. Gunton,et al.  Introduction to the Theory of Metastable and Unstable States , 1983 .

[31]  Michael J. Ward,et al.  Dynamics and Coarsening of Interfaces for the Viscous Cahn—Hilliard Equation in One Spatial Dimension , 2000 .

[32]  Morton E. Gurtin,et al.  On a theory of phase transitions with interfacial energy , 1985 .

[33]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[34]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[35]  J. Langer Models of Pattern Formation in First-Order Phase Transitions , 1986 .

[36]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[37]  Amy Novick-Cohen,et al.  Stable patterns in a viscous diffusion equation , 1991 .

[38]  Evelyn Sander,et al.  Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..

[39]  Christopher P. Grant SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD EQUATION , 1993 .

[40]  Giorgio Fusco,et al.  The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions , 1993 .

[41]  Fife,et al.  Higher-order phase field models and detailed anisotropy. , 1986, Physical review. B, Condensed matter.

[42]  C. M. Elliott,et al.  Global Existence and Stability of Solutions to the Phase Field Equations , 1990 .

[43]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[44]  Peter W. Bates,et al.  Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .

[45]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[46]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[47]  J. Ball,et al.  Material Instabilities in Continuum Mechanics, and Related Mathematical Problems , 1990 .

[48]  L. Modica,et al.  Gradient theory of phase transitions with boundary contact energy , 1987 .

[49]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[50]  Basil Nicolaenko,et al.  Low-Dimensional Behavior of the Pattern Formation Cahn-Hilliard Equation , 1985 .

[51]  Nelson,et al.  Order in metallic glasses and icosahedral crystals. , 1985, Physical review. B, Condensed matter.

[52]  N. Ashcroft,et al.  Weighted-density-functional theory of inhomogeneous liquids and the freezing transition. , 1985, Physical review. A, General physics.

[53]  Gunduz Caginalp,et al.  The role of microscopic anisotropy in the macroscopic behavior of a phase boundary , 1986 .

[54]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .

[55]  Evelyn Sander,et al.  Monte Carlo Simulations for Spinodal Decomposition , 1999 .

[56]  C. Charach,et al.  On Thermodynamically Consistent Schemes for Phase Field Equations , 1998 .

[57]  A. Novick-Cohen The nonlinear Cahn-Hilliard equation: Transition from spinodal decomposition to nucleation behavior , 1985 .

[58]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[59]  John W. Cahn,et al.  Theory of crystal growth and interface motion in crystalline materials , 1960 .

[60]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[61]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[62]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[63]  M. Mimura,et al.  Stationary states associated with phase separation in a pure material. I. The large latent heat case , 1989 .

[64]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[65]  John W. Cahn,et al.  On spinodal decomposition in cubic crystals , 1962 .

[66]  Desai,et al.  Early stages of spinodal decomposition for the Cahn-Hilliard-Cook model of phase separation. , 1988, Physical review. B, Condensed matter.

[67]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[68]  M. Yussouff,et al.  First-principles order-parameter theory of freezing , 1979 .

[69]  David J. Eyre,et al.  Systems of Cahn-Hilliard Equations , 1993, SIAM J. Appl. Math..

[70]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[71]  P. C. Hohenberg,et al.  Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation , 1974 .

[72]  Thomas Wanner,et al.  Spinodal Decomposition for the Cahn–Hilliard Equation in Higher Dimensions.¶Part I: Probability and Wavelength Estimate , 1998 .