Analyzes of Film Cooling Effectiveness from Cylindrical and Staggered Compound Cooling Holes with Alignment Angle of 30 Degree at the End of Combustor

A numerical simulation has been performed for the investigation of flow and heat transfer characteristics of a film cooling injected through a hole with cylindrical and compound angle orientation. This paper presents the effects of coolant injector configuration of cylindrical and compound cooling holes with alignment angle of 30 degree at blowing ratio, BR = 3.18 on the film cooling effectiveness near the end wall surface of a combustor simulator. In the current research a three dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package ANSYS FLUENT 14.0. This study has been performed with Reynolds-averaged Navier-Stokes turbulence model (RANS) on internal cooling passages The results indicate that using compound angle cooling holes injection, give much better protection than that obtained when simple angle cooling holes were used.