A thermodynamics-based approach for examining the suitability of cementitious formulations for solidifying and stabilizing coal-combustion wastes.

Cementitious binders are often used to immobilize industrial wastes such as residues of coal combustion. Such immobilization stabilizes wastes that contain contaminants by chemical containment, i.e., by uptake of contaminants into the cementitious reaction products. Expectedly, the release ("leachability") of contaminants is linked to: (i) the stability of the matrix (i.e., its resistance to decomposition on exposure to water), and, (ii) its porosity, which offers a pathway for the intrusion of water and egress of contaminant species. To examine the effects of the matrix chemistry on its suitability for immobilization, an equilibrium thermodynamics-based approach is demonstrated for cementitious formulations based on: ordinary portland cement (OPC), calcium aluminate cement (CAC) and alkali activated fly ash (AFA) binding agents. First, special focus is placed on computing the equilibrium phase assemblages using the bulk reactant compositions as an input. Second, the matrix's stability is assessed by simulating leaching that is controlled by progressive dissolution and precipitation of solids across a range of liquid (leachant)-to-(reaction product) solid (l/s) ratios and leachant pH's; e.g., following the LEAF 1313 and 1316 protocols. The performance of each binding formulation is evaluated based on the: (i) relative ability of the reaction products to chemically bind the contaminant(s), (ii) porosity of the matrix which correlates to its hydraulic conductivity, and, (iii) the extent of matrix degradation that follows leaching and which impact the rate and extent of release of potential contaminants. In this manner, the approach enables rapid, parametric assessment of a wide-range of stabilization solutions with due consideration of the matrix's mineralogy, porosity, and the leaching (exposure) conditions.

[1]  Patrick Goblet,et al.  Module-oriented modeling of reactive transport with HYTEC , 2003 .

[2]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[3]  S. Nagasaki,et al.  Change In Pore Structure And Composition Of Hardened Cement Paste During The Process Of Dissolution , 2005 .

[4]  Chang Li,et al.  A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes , 2016, Comput. Geosci..

[5]  John L. Provis,et al.  Alkali activated materials : state-of-the-art report, RILEM TC 224-AAM , 2014 .

[6]  Albert Einstein,et al.  Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005 .

[7]  J. Ideker,et al.  Calcium Aluminate Cements , 2019, Lea's Chemistry of Cement and Concrete.

[8]  J. Provis,et al.  Binder Chemistry – Low-Calcium Alkali-Activated Materials , 2014 .

[9]  A. G. Holterhoff,et al.  Calcium aluminate cements , 1990 .

[10]  B. Lothenbach,et al.  Composition-solubility-structure relationships in calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H). , 2015, Dalton transactions.

[11]  Iver Brevik,et al.  THERMODYNAMIC PROPERTIES OF THE , 1998 .

[12]  F. Glasser,et al.  Stability of strätlingite in the CASH system , 2016 .

[13]  B. Lothenbach,et al.  Thermodynamic modelling of the hydration of Portland cement , 2006 .

[14]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[15]  J. Provis,et al.  Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+). , 2008, Journal of hazardous materials.

[16]  Thomas Wagner,et al.  GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes , 2012, Computational Geosciences.

[17]  Thomas Kalbacher,et al.  Reactive transport codes for subsurface environmental simulation , 2015, Computational Geosciences.

[18]  Gaurav Sant,et al.  C–(N)–S–H and N–A–S–H gels: Compositions and solubility data at 25°C and 50°C , 2017 .

[19]  D. Hillel Introduction to environmental soil physics , 1982 .

[20]  J. Phair,et al.  Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers , 2001 .

[21]  A. G. Bhole,et al.  Removal of Cr6 + and Ni2+ from aqueous solution using bagasse and fly ash. , 2002, Waste management.

[22]  A. Roy,et al.  Solidification/Stabilization of Hazardous Waste: Evidence of Physical Encapsulation , 1992 .

[23]  N. Shafiq Degree of hydration and compressive strength of conditioned samples made of normal and blended cement system , 2011 .

[24]  Christopher B. Stabler,et al.  Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements , 2017 .

[25]  J. Provis,et al.  Geopolymer synthesis kinetics , 2009 .

[26]  Y. Mai,et al.  Porosity and mechanical properties of cement mortar , 1985 .

[27]  C. Dunant,et al.  A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste , 2015 .

[28]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[29]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[30]  F. P. Glasser,et al.  Fundamental aspects of cement solidification and stabilisation , 1997 .

[31]  K. Maekawa,et al.  MULTI-SCALE PHYSICOCHEMICAL MODELING OF SOIL-CEMENTITIOUS MATERIAL INTERACTION , 2006 .

[32]  A. Nonat,et al.  Zeta-Potential Study of Calcium Silicate Hydrates Interacting with Alkaline Cations , 2001 .

[33]  F. J. Pearson,et al.  Development and application of the Nagra/PSI Chemical Thermodynamic Data Base 01/01 , 2002, Geological Society, London, Special Publications.

[34]  A. E. Sáez,et al.  Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals. , 2006, The Science of the total environment.

[35]  Á. Palomo,et al.  Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests , 2004 .

[36]  K. Maekawa,et al.  Multi-scale Modeling of Concrete Performance , 2003 .

[37]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .

[38]  R. Perry,et al.  Mechanisms of metal stabilization by cement based fixation processes , 1985 .

[39]  Kazuko Haga,et al.  Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste , 2005 .

[40]  John L. Provis,et al.  Activating solution chemistry for geopolymers , 2009 .

[41]  J. D. Jabro,et al.  Gaseous diffusion equations for porous materials , 1982 .

[42]  Jun Ma,et al.  Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process. , 2009, Water research.

[43]  B. Lothenbach,et al.  Mechanisms and Modelling of Waste/Cement Interactions – Survey of Topics Presented at the Meiringen Workshop , 2006 .

[44]  A. Fick On liquid diffusion , 1995 .

[45]  John L. Provis,et al.  Alkali-activated materials , 2018, Cement and Concrete Research.

[46]  David S. Kosson,et al.  An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials , 2002 .

[47]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[48]  Jean-Michel Torrenti,et al.  Modelling of leaching in pure cement paste and mortar , 2000 .

[49]  B. Scheetz,et al.  Ettringite and CSH Portland cement phases for waste ion immobilization: A review , 1996 .

[50]  Xudong Chen,et al.  Influence of porosity on compressive and tensile strength of cement mortar , 2013 .

[51]  A. Nonat THE STRUCTURE AND STOICHIOMETRY OF C-S-H , 2004 .

[52]  Barbara Lothenbach,et al.  Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O , 2007 .

[53]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications☆ , 1997 .

[54]  J. Currie,et al.  Gaseous diffusion in porous media. Part 2. - Dry granular materials , 1960 .

[55]  J. I. Álvarez,et al.  Solidification/stabilization of toxic metals in calcium aluminate cement matrices. , 2013, Journal of hazardous materials.

[56]  Ángel Palomo,et al.  Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead , 2003 .

[57]  N. Lequeux,et al.  Speciation of cadmium in cement: Part II. C3S hydration with Cd2+ solution , 2001 .

[58]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[59]  Rupert J. Myers,et al.  A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation , 2014 .

[60]  D. Langmuir Aqueous Environmental Geochemistry , 1997 .

[61]  Karen Scrivener,et al.  A thermodynamic and experimental study of the conditions of thaumasite formation , 2008 .

[62]  B. Oh,et al.  PREDICTION OF DIFFUSIVITY OF CONCRETE BASED ON SIMPLE ANALYTIC EQUATIONS , 2004 .

[63]  K. Pitzer Ion Interaction Approach: Theory and Data Correlation , 2018 .

[64]  Dmitrii A. Kulik,et al.  MODELLING CHEMICAL EQUILIBRIUM PARTITIONING WITH THE GEMS-PSI CODE , 2004 .

[65]  Mark Tyrer,et al.  Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. , 2009, Waste management.

[66]  D. Cocke,et al.  The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems , 1995 .

[67]  Colin Hills,et al.  Ordinary portland cement based solidification of toxic wastes: The role of OPC reviewed , 1993 .

[68]  F. Winnefeld,et al.  AAM Concretes: Standards for Mix Design/Formulation and Early-Age Properties , 2014 .

[69]  B. Lothenbach Thermodynamic equilibrium calculations in cementitious systems , 2010 .

[70]  J. Provis,et al.  Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[71]  Michelle Marie Lacks Geopolymer-based solutions for coal combustion product solidification and stabilization , 2017 .

[72]  B. Lothenbach,et al.  The AFm phase in Portland cement , 2007 .

[73]  Duncan Herfort,et al.  Thermodynamics and cement science , 2011 .

[74]  Thomas A. Jones,et al.  Calculation of mass transfer in geochemical processes involving aqueous solutions , 1970 .

[75]  Fredrik P. Glasser,et al.  A thermodynamic model for blended cements. II: Cement hydrate phases; thermodynamic values and modelling studies , 1992 .

[76]  Liqun Hu,et al.  Kinetic and thermodynamic modeling of Portland cement hydration at low temperatures , 2017, Chemical Papers.

[77]  P. Randall,et al.  Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. , 2004, Journal of hazardous materials.

[78]  L Zou,et al.  Reduction of metal leaching in brown coal fly ash using geopolymers. , 2004, Journal of hazardous materials.

[79]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[80]  Ángel Palomo,et al.  Fixing Arsenic in Alkali‐Activated Cementitious Matrices , 2005 .

[81]  X. Querol,et al.  Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. , 2008, Journal of hazardous materials.

[82]  Nicolas Lequeux,et al.  Speciation of cadmium in cement: Part I. Cd2+ uptake by C-S-H , 2001 .

[83]  Caijun Shi,et al.  Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. , 2006, Journal of hazardous materials.

[84]  J.S.J. van Deventer,et al.  Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based “geopolymers” , 2004 .

[85]  Anja Buchwald,et al.  Durability and Testing – Physical Processes , 2014 .

[86]  Jeffrey W. Bullard,et al.  An improved basis for characterizing the suitability of fly ash as a cement replacement agent , 2017 .

[87]  Kan,et al.  Thermodynamic Model , 2005 .

[88]  I. Alinnor Adsorption of heavy metal ions from aqueous solution by fly ash , 2007 .

[89]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[90]  R. Snellings,et al.  TC 238-SCM: hydration and microstructure of concrete with SCMs , 2015 .

[91]  J. Deja,et al.  Spectroscopy study of Zn, Cd, Pb and Cr ions immobilization on C-S-H phase. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[92]  Susan A. Bernal,et al.  Advances in near-neutral salts activation of blast furnace slags , 2016 .

[93]  Eric R. Vance,et al.  Immobilization of Pb in a Geopolymer Matrix , 2005 .

[94]  J. Provis Immobilisation of toxic wastes in geopolymers , 2009 .

[95]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics , 1999 .

[96]  Heechan Cho,et al.  A study on removal characteristics of heavy metals from aqueous solution by fly ash. , 2005, Journal of hazardous materials.

[97]  D. Dermatas,et al.  Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study. , 2006, Journal of hazardous materials.

[98]  J. Stegemann,et al.  Comparisons of operating envelopes for contaminated soil stabilised/solidified with different cementitious binders , 2014, Environmental Science and Pollution Research.

[99]  A. Macías,et al.  Characterization of cement-stabilized Cd wastes , 1997 .

[100]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[101]  M. Sahimi,et al.  Tortuosity in Porous Media: A Critical Review , 2013 .