Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks

With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail.

[1]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[2]  James G. King,et al.  Automated point-neuron simplification of data-driven microcircuit models , 2016, 1604.00087.

[3]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[4]  Michael L. Hines,et al.  Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors , 2008, Journal of Computational Neuroscience.

[5]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[6]  Erik De Schutter,et al.  Modeling Complex Neurons , 2009 .

[7]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[8]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[9]  Michael L. Hines,et al.  Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb , 2014, Front. Comput. Neurosci..

[10]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[11]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[12]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[13]  Oscar Herreras,et al.  Disentanglement of local field potential sources by independent component analysis , 2010, Journal of Computational Neuroscience.

[14]  G. Buzsáki,et al.  The log-dynamic brain: how skewed distributions affect network operations , 2014, Nature Reviews Neuroscience.

[15]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[16]  Matthias Bethge,et al.  Statistical Analysis of Multi-Cell Recordings: Linking Population Coding Models to Experimental Data , 2011, Front. Comput. Neurosci..

[17]  Tobias C. Potjans,et al.  The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model , 2012, Cerebral cortex.

[18]  Michael L. Hines,et al.  Neuroinformatics Original Research Article Neuron and Python , 2022 .

[19]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[20]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[21]  Wilfrid Rall Rall model , 2009, Scholarpedia.

[22]  V. A. Makarov,et al.  New uses of LFPs: Pathway-specific threads obtained through spatial discrimination , 2015, Neuroscience.

[23]  Anders Lansner,et al.  Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models , 2015, PLoS Comput. Biol..

[24]  H. Swadlow,et al.  Activation of a Cortical Column by a Thalamocortical Impulse , 2002, The Journal of Neuroscience.

[25]  Stefano Panzeri,et al.  The Laminar and Temporal Structure of Stimulus Information in the Phase of Field Potentials of Auditory Cortex , 2011, The Journal of Neuroscience.

[26]  N. Logothetis,et al.  In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation , 2007, Neuron.

[27]  Nicolas Brunel,et al.  Cortical dynamics during naturalistic sensory stimulations: Experiments and models , 2011, Journal of Physiology-Paris.

[28]  Ivan Cohen,et al.  Unitary inhibitory field potentials in the CA3 region of rat hippocampus , 2010, The Journal of physiology.

[29]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[30]  Viola Priesemann,et al.  Local active information storage as a tool to understand distributed neural information processing , 2013, Front. Neuroinform..

[31]  Markus Diesmann,et al.  Construction of a multi-scale spiking model of macaque visual cortex , 2015 .

[32]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[33]  W. Singer,et al.  Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials , 1979, The Journal of comparative neurology.

[34]  C Baumgartner,et al.  Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. , 1990, Journal of neurophysiology.

[35]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[36]  Wulfram Gerstner,et al.  The quantitative single-neuron modeling competition , 2008, Biological Cybernetics.

[37]  Gaute T. Einevoll,et al.  Intrinsic dendritic filtering gives low-pass power spectra of local field potentials , 2010, Journal of Computational Neuroscience.

[38]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[39]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[40]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[41]  Gaute T. Einevoll,et al.  Frequency Dependence of Signal Power and Spatial Reach of the Local Field Potential , 2013, PLoS Comput. Biol..

[42]  Olivier D. Faugeras,et al.  A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs , 2008, Front. Comput. Neurosci..

[43]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[44]  Pascal Mailley,et al.  A New 3-D Finite-Element Model Based on Thin-Film Approximation for Microelectrode Array Recording of Extracellular Action Potential , 2008, IEEE Transactions on Biomedical Engineering.

[45]  Marc Timme,et al.  Statistical physics of neural systems with non-additive dendritic coupling , 2015, 1507.03881.

[46]  Erik De Schutter,et al.  Context-aware modeling of neuronal morphologies , 2014, Front. Neuroanat..

[47]  F. Chavane,et al.  Voltage-sensitive dye imaging: Technique review and models , 2010, Journal of Physiology-Paris.

[48]  Wulfram Gerstner,et al.  How Good Are Neuron Models? , 2009, Science.

[49]  Giulio Tononi,et al.  Modeling sleep and wakefulness in the thalamocortical system. , 2005, Journal of neurophysiology.

[50]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[51]  Masao Ito Error detection and representation in the olivo-cerebellar system , 2013, Front. Neural Circuits.

[52]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[53]  Matthew J Nelson,et al.  Do electrode properties create a problem in interpreting local field potential recordings? , 2010, Journal of neurophysiology.

[54]  C. Schroeder,et al.  How Local Is the Local Field Potential? , 2011, Neuron.

[55]  Andrzej Wróbel,et al.  Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density , 2010, Journal of Computational Neuroscience.

[56]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[57]  Xing Chen,et al.  Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue , 2014, Brain Structure and Function.

[58]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[59]  Luis A. Camuñas-Mesa,et al.  A Detailed and Fast Model of Extracellular Recordings , 2013, Neural Computation.

[60]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[61]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[62]  Tomoki Fukai,et al.  Spiking network simulation code for petascale computers , 2014, Front. Neuroinform..

[63]  Klas H. Pettersen,et al.  Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities , 2006, Journal of Neuroscience Methods.

[64]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[65]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[66]  Nicholas G. Hatsopoulos,et al.  Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex , 2016, Scientific Reports.

[67]  E. Kandel,et al.  Neuroscience thinks big (and collaboratively) , 2013, Nature Reviews Neuroscience.

[68]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[69]  Marc-Oliver Gewaltig,et al.  A Sparse Reformulation of the Green’s Function Formalism Allows Efficient Simulations of Morphological Neuron Models , 2015, Neural Computation.

[70]  Moritz Helias,et al.  Modulated escape from a metastable state driven by colored noise. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[72]  Christof Koch,et al.  Cable theory in neurons with active, linearized membranes , 2004, Biological Cybernetics.

[73]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[74]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[75]  B W Connors,et al.  Spatiotemporal properties of short-term plasticity sensorimotor thalamocortical pathways of the rat , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[77]  Gaute T. Einevoll,et al.  Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs) , 2015, Neuroinformatics.

[78]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[79]  Markus Diesmann,et al.  Multi-scale account of the network structure of macaque visual cortex , 2017, Brain Structure and Function.

[80]  J. Alonso,et al.  Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex , 2011, Nature Neuroscience.

[81]  Tai Sing Lee,et al.  Local field potentials indicate network state and account for neuronal response variability , 2010, Journal of Computational Neuroscience.

[82]  P. J. Sjöström,et al.  Correction: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS Biology.

[83]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[84]  N. H. Sabah,et al.  Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. , 1969, Biophysical journal.

[85]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[86]  Marc-Oliver Gewaltig,et al.  Efficient Parallel Simulation of Large-Scale Neuronal Networks on Clusters of Multiprocessor Computers , 2007, Euro-Par.

[87]  Christopher I. Petkov,et al.  Complex Spectral Interactions Encoded by Auditory Cortical Neurons: Relationship Between Bandwidth and Pattern , 2010, Front. Syst. Neurosci..

[88]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[89]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[90]  Heiko J. Luhmann,et al.  Propagation of spontaneous slow-wave activity across columns and layers of the adult rat barrel cortex in vivo , 2016, Brain Structure and Function.

[91]  Seppo P. Ahlfors,et al.  Modeling the effect of dendritic input location on MEG and EEG source dipoles , 2015, Medical & Biological Engineering & Computing.

[92]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[93]  D. Contreras,et al.  Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. , 1997, Journal of neurophysiology.

[94]  Nikos K. Logothetis,et al.  Physiological Foundations of Neural Signals , 2013 .

[95]  A. Riehle,et al.  Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements , 2013, Front. Neural Circuits.

[96]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[97]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[98]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[99]  John Rinzel,et al.  Role of active dendritic conductances in subthreshold input integration , 2011, Journal of Computational Neuroscience.

[100]  Markus Diesmann,et al.  A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas , 2018, PLoS Comput. Biol..

[101]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[102]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[103]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[104]  Theoden I. Netoff,et al.  Synchronization from Second Order Network Connectivity Statistics , 2011, Front. Comput. Neurosci..

[105]  Anders M. Dale,et al.  Estimation of Thalamocortical and Intracortical Network Models from Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat Barrel System , 2009, PLoS Comput. Biol..

[106]  Alexander Huk,et al.  PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring Complex Visual Stimuli and Online Behavioral Control , 2012, Front. Neuroinform..

[107]  Francois D. Szymanski,et al.  Current source density profiles of stimulus-specific adaptation in rat auditory cortex. , 2009, Journal of neurophysiology.

[108]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[109]  R. Quiroga,et al.  Principles of neural coding. , 2013 .

[110]  Tomoki Fukai,et al.  Computational Implications of Lognormally Distributed Synaptic Weights , 2014, Proceedings of the IEEE.

[111]  Erik De Schutter,et al.  Computational Modeling Methods for Neuroscientists , 2009 .

[112]  C. Gabriel,et al.  Electrical conductivity of tissue at frequencies below 1 MHz , 2009, Physics in medicine and biology.

[113]  R. Kawashima,et al.  An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. , 2010, Journal of neurophysiology.

[114]  Moritz Helias,et al.  Neuroinformatics Original Research Article Pynest: a Convenient Interface to the Nest Simulator , 2022 .

[115]  Torbjørn V. Ness,et al.  Active subthreshold dendritic conductances shape the local field potential , 2015, The Journal of physiology.

[116]  Gaute T. Einevoll,et al.  LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons , 2014, Front. Neuroinform..

[117]  Michael Mikolajczak,et al.  Designing And Building Parallel Programs: Concepts And Tools For Parallel Software Engineering , 1997, IEEE Concurrency.

[118]  Alexander Borst,et al.  The TREES Toolbox—Probing the Basis of Axonal and Dendritic Branching , 2011, Neuroinformatics.

[119]  Jyh-Jang Sun,et al.  Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo. , 2015, Cerebral cortex.

[120]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[121]  Moritz Helias,et al.  Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit , 2015, PLoS Comput. Biol..

[122]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[123]  Nicolas Brunel,et al.  Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons , 2008, PLoS Comput. Biol..

[124]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  Stefan Rotter,et al.  Exact digital simulation of time-invariant linear systems with applications to neuronal modeling , 1999, Biological Cybernetics.

[126]  Moritz Helias,et al.  Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations , 2014, PLoS Comput. Biol..

[127]  Klas H. Pettersen,et al.  Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. , 2007, Journal of neurophysiology.

[128]  Kristen M. Harris,et al.  Reconstruction of Neuronal Morphology , 2009 .

[129]  D. Wójcik,et al.  Independent Components of Neural Activity Carry Information on Individual Populations , 2014, PloS one.

[130]  A. Dale,et al.  Monte Carlo simulation of the spatial resolution and depth sensitivity of two-dimensional optical imaging of the brain. , 2011, Journal of biomedical optics.

[131]  Gaute T. Einevoll,et al.  Estimation of population firing rates and current source densities from laminar electrode recordings , 2008, Journal of Computational Neuroscience.

[132]  C. Bédard,et al.  Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. , 2008, Biophysical journal.

[133]  S. Grün,et al.  Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration , 2014, Nature Communications.

[134]  Christof Koch,et al.  A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry , 1985, Journal of Neuroscience Methods.

[135]  Anders M. Dale,et al.  Handbook of Neural Activity Measurement: Extracellular spikes and CSD , 2012 .

[136]  Örjan Ekeberg,et al.  Large-Scale Modeling – a Tool for Conquering the Complexity of the Brain , 2008, Frontiers Neuroinformatics.

[137]  Jeffrey D. Schall,et al.  Review of signal distortion through metal microelectrode recording circuits and filters , 2008, Journal of Neuroscience Methods.

[138]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[139]  Shigeru Shinomoto,et al.  Made-to-Order Spiking Neuron Model Equipped with a Multi-Timescale Adaptive Threshold , 2009, Front. Comput. Neurosci..

[140]  James Kozloski,et al.  Self-referential forces are sufficient to explain different dendritic morphologies , 2013, Front. Neuroinform..

[141]  Marc-Oliver Gewaltig,et al.  Towards Reproducible Descriptions of Neuronal Network Models , 2009, PLoS Comput. Biol..

[142]  M. Carandini,et al.  Stimulus contrast modulates functional connectivity in visual cortex , 2009, Nature Neuroscience.

[143]  M L Hines,et al.  Neuron: A Tool for Neuroscientists , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[144]  Kenichi Ohki,et al.  Conversion of Working Memory to Motor Sequence in the Monkey Premotor Cortex , 2003, Science.

[145]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[146]  A. Riehle,et al.  The Local Field Potential Reflects Surplus Spike Synchrony , 2010, Cerebral cortex.

[147]  Christof Koch,et al.  Ephaptic coupling of cortical neurons , 2011, Nature Neuroscience.

[148]  Srdjan Ostojic,et al.  Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons , 2014, Nature Neuroscience.

[149]  Richard Kempter,et al.  State-dependencies of learning across brain scales , 2015, Front. Comput. Neurosci..

[150]  John Hertz,et al.  Cross-Correlations in High-Conductance States of a Model Cortical Network , 2010, Neural Computation.

[151]  Gaute T. Einevoll,et al.  ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms , 2015, Journal of Neuroscience Methods.

[152]  Christof Koch,et al.  The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics , 2013, PLoS Comput. Biol..

[153]  Benjamin Torben-Nielsen,et al.  The Green’s function formalism as a bridge between single- and multi-compartmental modeling , 2013, Biological Cybernetics.

[154]  Moritz Helias,et al.  Decorrelation of Neural-Network Activity by Inhibitory Feedback , 2012, PLoS Comput. Biol..

[155]  D. Robinson,et al.  The electrical properties of metal microelectrodes , 1968 .

[156]  Markus Zahn,et al.  Impact of brain tissue filtering on neurostimulation fields: A modeling study , 2013, NeuroImage.

[157]  Marc-Oliver Gewaltig,et al.  Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses , 2014, Front. Comput. Neurosci..

[158]  Marc de Kamps,et al.  A Generic Approach to Solving Jump Diffusion Equations with Applications to Neural Populations , 2013, 1309.1654.

[159]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[160]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[161]  T. Sejnowski,et al.  Model of Transient Oscillatory Synchronization in the Locust Antennal Lobe , 2001, Neuron.

[162]  Hans-Christian Hege,et al.  Generation of dense statistical connectomes from sparse morphological data , 2014, Front. Neuroanat..

[163]  M. Ursino,et al.  Travelling waves and EEG patterns during epileptic seizure: analysis with an integrate-and-fire neural network. , 2006, Journal of theoretical biology.

[164]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[165]  Nicolas Brunel,et al.  Author's Personal Copy Understanding the Relationships between Spike Rate and Delta/gamma Frequency Bands of Lfps and Eegs Using a Local Cortical Network Model , 2022 .

[166]  Moritz Helias,et al.  Echoes in correlated neural systems , 2012, 1207.0298.

[167]  U. Eysel,et al.  Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17) , 1992, Neuroscience.

[168]  James G. King,et al.  An algorithm to predict the connectome of neural microcircuits , 2015, Front. Comput. Neurosci..

[169]  Michele Tagliabue,et al.  A modular theory of multisensory integration for motor control , 2014, Front. Comput. Neurosci..

[170]  Idan Segev,et al.  Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: Interweaving in vitro and in vivo experimental observations , 2007, Proceedings of the National Academy of Sciences.

[171]  Timothy J. Gawne,et al.  The local and non-local components of the local field potential in awake primate visual cortex , 2010, Journal of Computational Neuroscience.

[172]  Frédéric Chavane,et al.  A biophysical cortical column model to study the multi-component origin of the VSDI signal , 2010, NeuroImage.

[173]  Nicholas T. Carnevale,et al.  Simulation of networks of spiking neurons: A review of tools and strategies , 2006, Journal of Computational Neuroscience.

[174]  Tomoki Fukai,et al.  Supercomputers Ready for Use as Discovery Machines for Neuroscience , 2012, Front. Neuroinform..

[175]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[176]  Romain Brette,et al.  Handbook of neural activity measurement , 2012 .

[177]  H. Lüders,et al.  EEG source imaging in epilepsy—practicalities and pitfalls , 2012, Nature Reviews Neurology.

[178]  Shigeru Shinomoto,et al.  Elemental Spiking Neuron Model for Reproducing Diverse Firing Patterns and Predicting Precise Firing Times , 2011, Front. Comput. Neurosci..