Cu–Bi–Se-based pavonite homologue: a promising thermoelectric material with low lattice thermal conductivity

Pavonite homologues, Cux+yBi5−ySe8 (1.2 ≤ x ≤ 1.5, 0.1 ≤ y ≤ 0.4), in a polycrystalline bulk form have been synthesized using a conventional solid state sintering technique. Their thermal and electronic transport properties were evaluated for mid-temperature thermoelectric power generation applications. Structural complexity, based on unique substitutional and interstitial Cu atoms in the structure, makes this system attractive as an intrinsic low thermal conductivity material; also the band structure calculations revealed that interstitial Cu atoms generate n-type carrier conduction. Room temperature lattice thermal conductivities ranging between 0.41 W m−1 K−1 and 0.55 W m−1 K−1 were found for Cux+yBi5−ySe8; these values are comparable to those of the state-of-the-art low lattice thermal conductivity systems. These extremely low thermal conductivities combined with the power factors result in the highest ZT = 0.27 at 560 K for Cu1.9Bi4.6Se8.

[1]  P. Poudeu,et al.  Crystal structure and physical properties of the quaternary manganese-bearing pavonite homologue Mn1.34Sn6.66Bi8Se20 , 2010 .

[2]  Qingjie Zhang,et al.  Synthesis and thermoelectric properties of (Ti,Zr,Hf)(Co,Pd)Sb half-Heusler compounds , 2009 .

[3]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[4]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[5]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[6]  Jihui Yang,et al.  Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce and Sr) , 2007 .

[7]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[8]  D. Rowe Thermoelectrics Handbook , 2005 .

[9]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[10]  M. Kanatzidis,et al.  Crystal Growth, Thermoelectric Properties, and Electronic Structure of AgBi3S5 and AgSbxBi3-xS5 (x = 0.3) , 2005 .

[11]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[12]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[13]  J. Teubner,et al.  High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.

[14]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[15]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[16]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[17]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[18]  G. A. Slack,et al.  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[19]  E. J. Freeman,et al.  Localized vibrational modes in metallic solids , 1998, Nature.

[20]  Jean-Pierre Fleurial,et al.  Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[23]  Seifert,et al.  Fluid Vesicles in Shear Flow. , 1996, Physical review letters.

[24]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[25]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[26]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[27]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[28]  F. D. Rosi,et al.  Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300° K , 1966 .

[29]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[30]  E. A. Miller,et al.  Preparation, Phase‐Boundary Energies, and Thermoelectric Properties of InSb‐Sb Eutectic Alloys with Ordered Microstructures , 1963 .

[31]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[32]  H. J. Goldsmid,et al.  Recent Studies of Bismuth Telluride and Its Alloys , 1961 .

[33]  F. D. Rosi,et al.  Materials for thermoelectric refrigeration , 1959 .

[34]  E. Makovicky,et al.  The crystal structure of Cu1.78Bi4.73Se8, an N = 3 pavonite homologue with a Cu-for-Bi substitution , 2006 .