Irreducible Equivalence Relations, Gleason Spaces, and de Vries Duality

By de Vries duality, the category of compact Hausdorff spaces is dually equivalent to the category of de Vries algebras (complete Boolean algebras endowed with a proximity-like relation). We provide an alternative “modal-like” duality by introducing the concept of a Gleason space, which is a pair (X,R), where X is an extremally disconnected compact Hausdorff space and R is an irreducible equivalence relation on X. Our main result states that the category of Gleason spaces is equivalent to the category of compact Hausdorff spaces, and is dually equivalent to the category of de Vries algebras.

[1]  Guram Bezhanishvili,et al.  The Priestley Separation Axiom for Scattered Spaces , 2002, Order.

[2]  Guram Bezhanishvili,et al.  Proximity Frames and Regularization , 2014, Appl. Categorical Struct..

[3]  Guram Bezhanishvili,et al.  Lattice subordinations and Priestley duality , 2013 .

[4]  Sergio Salbany,et al.  On compact* spaces and compactifications , 1974 .

[5]  A. Chagrov,et al.  Modal Logic (Oxford Logic Guides, vol. 35) , 1997 .

[6]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[7]  S. Lane Categories for the Working Mathematician , 1971 .

[8]  Guram Bezhanishvili,et al.  Stone duality and Gleason covers through de Vries duality , 2010 .

[9]  H. DE VRIES,et al.  COMPACT SPACES AND COMPACTIFICATIONS AN ALGEBRAIC APPROACH , 2017 .

[10]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[11]  Dimiter Vakarelov,et al.  Topological Representation of Precontact Algebras and a Connected Version of the Stone Duality Theorem -- I , 2015, 1508.02220.

[12]  Dimiter Vakarelov,et al.  Topological Representation of Precontact Algebras , 2005, RelMiCS.

[13]  Osama A. El-Tantawy,et al.  On I−Proximity Spaces , 2016 .

[14]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[15]  Sergio A. Celani,et al.  Quasi-modal algebras , 2001 .

[16]  Guram Bezhanishvili,et al.  De Vries Algebras and Compact Regular Frames , 2011, Applied Categorical Structures.

[17]  Albert Stralka A partially ordered space which is not a priestley space , 1980 .

[18]  Algebraic logic , 1985, Problem books in mathematics.

[19]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[20]  Guram Bezhanishvili,et al.  Modal compact Hausdorff spaces , 2015, J. Log. Comput..

[21]  Stanislav Kikot,et al.  Sahlqvist Theorems for Precontact Logics , 2012, Advances in Modal Logic.

[22]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[23]  Guram Bezhanishvili,et al.  STABLE CANONICAL RULES , 2016, The Journal of Symbolic Logic.

[24]  Andrew M. Gleason,et al.  Projective topological spaces , 1958 .

[25]  Georgi D. Dimov,et al.  A de Vries-type duality theorem for the category of locally compact spaces and continuous maps. I , 2010 .

[26]  Robert Goldblatt,et al.  Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..

[27]  M. Stone The theory of representations for Boolean algebras , 1936 .

[28]  Hilary A. Priestley,et al.  Ordered Topological Spaces and the Representation of Distributive Lattices , 1972 .

[29]  Viorica Sofronie-Stokkermans,et al.  Duality and Canonical Extensions of Bounded Distributive Lattices with Operators, and Applications to the Semantics of Non-Classical Logics I , 2000, Stud Logica.

[30]  Ivo Düntsch,et al.  Region–based theory of discrete spaces: A proximity approach , 2007, Annals of Mathematics and Artificial Intelligence.