A model potential for acetonitrile: from small clusters to liquid.

A portable model potential, representing the intermolecular interaction of acetonitrile with itself and with ions, is proposed. Such model, formulated as a combination of a few effective components, given in terms of the polarizability and dipole moment values of the molecular partners, is here adopted as a building block of the force field of acetonitrile clusters in molecular dynamics simulations. Its reliability is tested by comparing the predicted features for both small ionic and neutral clusters containing acetonitrile with ab initio results and experimental information. Its application to molecular dynamics simulations of liquid acetonitrile and of the solvated Li(+), Na(+), K(+), and I(-), performed at several values of the temperature, discloses an ample and interesting phenomenology, described in an internally consistent way. Such model will be useful to assess the effect of intermolecular interactions on the dynamics of acetonitrile processes occurring in various environments of applied relevance, with emphasis on the dye-sensitized solar cell framework.

[1]  B. Hartke,et al.  Dodecahedral clathrate structures and magic numbers in alkali cation microhydration clusters. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Timothy D Vaden,et al.  Competing non-covalent interactions in alkali metal ion-acetonitrile-water clusters. , 2005, The journal of physical chemistry. A.

[3]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[4]  Anders Hagfeldt,et al.  Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. , 2009, Accounts of chemical research.

[5]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[6]  A. Costantini,et al.  Are micelles needed to form methane hydrates in sodium dodecyl sulfate solutions? , 2012, The journal of physical chemistry. B.

[7]  V. P. Sazonov,et al.  IUPAC-NIST Solubility Data Series. 78. Acetonitrile Binary Systems , 2002 .

[8]  G. Iverson,et al.  Quantum fields and interactions of massless particles: the continuous spin case , 1971 .

[9]  S. Hirano,et al.  New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether grou , 2011 .

[10]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[11]  Fernando Pirani,et al.  Range, strength and anisotropy of intermolecular forces in atom–molecule systems: an atom–bond pairwise additivity approach , 2001 .

[12]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[13]  Daniel Spångberg,et al.  The solvation of Li+ and Na+ in acetonitrile from ab initio-derived many-body ion–solvent potentials , 2004 .

[14]  Antonio Laganà,et al.  A study to improve the van der Waals component of the interaction in water clusters , 2008 .

[15]  Masaaki Tabata,et al.  Liquid Structure of Acetonitrile−Water Mixtures by X-ray Diffraction and Infrared Spectroscopy , 1998 .

[16]  M. Albertí,et al.  A portable intermolecular potential for molecular dynamics studies of NMA-NMA and NMA-H2O aggregates. , 2011, Physical chemistry chemical physics : PCCP.

[17]  Atsushi Urakawa,et al.  An atomistic picture of the regeneration process in dye sensitized solar cells , 2010, Proceedings of the National Academy of Sciences.

[18]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[19]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[20]  Antonio Laganà,et al.  On the development of an effective model potential to describe water interaction in neutral and ionic clusters , 2009 .

[21]  Fernando Pirani,et al.  Atom-bond pairwise additive representation for halide-benzene potential energy surfaces: an ab initio validation study. , 2009, The journal of physical chemistry. A.

[22]  M. Islam,et al.  Ab Initio Study of Potassium Ion Clusters of Methanol and Acetonitrile and a Systematic Comparison with Hydrated Clusters , 1998 .

[23]  Marvin Johnson,et al.  EVIDENCE FOR THE HIGH-ENERGY (COLLINEAR) VAN DER WAALS ISOMER OF THE ACETONITRILE DIMER , 1996 .

[24]  T. Ohba,et al.  Far-infrared optical constants of liquid acetonitrile at 238 to 343 K as measured with a synchrotron radiation source , 1991 .

[25]  A. Becke Density-functional thermochemistry. , 1996 .

[26]  Margarita Albertí Rare gas-benzene-rare gas interactions: structural properties and dynamic behavior. , 2010, The journal of physical chemistry. A.

[27]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[28]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[29]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[30]  Francisco B. Pereira,et al.  An evolutionary algorithm for the global optimization of molecular clusters: application to water, benzene, and benzene cation. , 2011, The journal of physical chemistry. A.

[31]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[32]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[33]  P. Supaphol,et al.  Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene , 2004 .

[34]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[35]  Influence of the intermolecular electrostatic potential on properties of polar polarizable aprotic solvents , 1999 .

[36]  R. Mountain Shear viscosity and dielectric constant of liquid acetonitrile , 1997 .

[37]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[38]  T. Edwards,et al.  A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA. , 2011, Biomicrofluidics.

[39]  William L. Jorgensen,et al.  Monte Carlo simulations of liquid acetonitrile with a three-site model , 1988 .

[40]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[41]  M. D. Zeidler,et al.  Molecular pair-correlation function of liquid acetonitrile from X-ray and neutron-diffraction studies , 1978 .

[42]  Stefano Falcinelli,et al.  A molecular beam scattering investigation of methanol-noble gas complexes: Characterization of the isotropic potential and insights into the nature of the interaction , 2012 .

[43]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[44]  F. J. Luque,et al.  Comparison of Different Three-site Interaction Potentials for Liquid Acetonitrile , 2001 .

[45]  J. P. Peña,et al.  Methyl cianide: Spectroscopic studies of isotopically substituted species, and the harmonic potential function , 1978 .

[46]  Miquel Duran,et al.  How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? , 1996 .

[47]  Peter A. Kollman,et al.  Molecular dynamics simulation studies of liquid acetonitrile: New six‐site model , 2000, J. Comput. Chem..

[48]  A. Sum,et al.  Prediction of the phase behavior of acetonitrile and methanol with ab initio pair potentials. I. Pure components , 2002 .

[49]  M. Albertí,et al.  Competitive role of CH4-CH4 and CH-π interactions in C6H6-(CH4)n aggregates: the transition from dimer to cluster features. , 2012, The journal of physical chemistry. A.

[50]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[51]  J. Weeks,et al.  Interfacial Organization of Acetonitrile: Simulation and Experiment , 2010 .

[52]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[53]  T. Beu,et al.  Calculation of structures and vibrational spectra of acetonitrile clusters , 1998 .

[54]  E. Cabaleiro-Lago,et al.  INTERMOLECULAR POTENTIAL FOR ACETONITRILE BASED ON AB INITIO CALCULATIONS , 1999 .

[55]  Fernando Pirani,et al.  Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. , 2008, Physical chemistry chemical physics : PCCP.

[56]  A. Fernández-Ramos,et al.  Intermolecular interactions and cooperative effects in acetonitrile clusters. An ab initio molecular orbital study , 2000 .

[57]  Ian R. McDonald,et al.  An effective pair potential for liquid acetonitrile , 1983 .

[58]  Zai-Qing Wen,et al.  Detection of Trace Melamine in Raw Materials Used for Protein Pharmaceutical Manufacturing Using Surface-Enhanced Raman Spectroscopy (SERS) with Gold Nanoparticles , 2011, Applied spectroscopy.

[59]  Jürg Hutter,et al.  Atomistic simulations of a solid/liquid interface: a combined force field and first principles approach to the structure and dynamics of acetonitrile near an anatase surface , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[61]  Fernando Pirani,et al.  Static and dynamic properties of anionic intermolecular aggregates: the I−–benzene–Arn case , 2009 .

[62]  Robert Baudot,et al.  Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography-tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. , 2012, Journal of chromatography. A.

[63]  C. Chabalowski,et al.  AB INITIO INTERACTION POTENTIALS FOR SIMULATIONS OF DIMETHYLNITRAMINE SOLUTIONS IN SUPERCRITICAL CARBON DIOXIDE WITH COSOLVENTS , 1999 .

[64]  Martin Head-Gordon,et al.  Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer , 1994 .

[65]  M. Albertí,et al.  Cation-pi-anion interaction in alkali ion-benzene-halogen ion clusters. , 2009, The journal of physical chemistry. A.

[66]  Fernando Pirani,et al.  Atom–bond pairwise additive representation for intermolecular potential energy surfaces , 2004 .

[67]  Antonio Laganà,et al.  A molecular dynamics study for the isomerization of Ar solvated (benzene)2–K+ heteroclusters , 2006 .

[68]  Robert L. Hurle,et al.  Self-diffusion in liquid acetonitrile under pressure , 1982 .

[69]  E. Cabaleiro-Lago,et al.  An intermolecular potential function for Na+–acetonitrile obtained from ab initio calculations. , 1998 .

[70]  Hun‐Gi Jung,et al.  An Advanced Lithium‐Sulfur Battery , 2013 .

[71]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[72]  G. Pinto Structural, energetic, and electronic properties of (CH 3 CN) 2-8 clusters by density functional theory , 2004 .

[73]  B. Cabral,et al.  Structural, energetic, and electronic properties of (CH3CN)2–8 clusters by density functional theory , 2004 .

[74]  M. Albertí,et al.  A generalized formulation of ion-π electron interactions: role of the nonelectrostatic component and probe of the potential parameter transferability. , 2010, The journal of physical chemistry. A.

[75]  E. Cabaleiro-Lago,et al.  Ab initio study of M(CH3CN)n clusters (M=Li+, Na+, Mg2+) in the gas phase , 2000 .

[76]  Vincenzo Barone,et al.  Separation between fast and slow polarizations in continuum solvation models , 2000 .

[77]  S. Cunha,et al.  Multipesticide residue analysis in maize combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. , 2011, Journal of chromatography. A.

[78]  E. Cabaleiro-Lago,et al.  A POTENTIAL FUNCTION FOR INTERMOLECULAR INTERACTION IN THE ACETONITRILE DIMER CONSTRUCTED FROM AB INITIO DATA , 1997 .

[79]  Vincenzo Barone,et al.  Time-dependent density functional theory for molecules in liquid solutions , 2001 .

[80]  D. Shaw,et al.  IUPAC-NIST SOLUBILITY DATA SERIES , 2005 .

[81]  M. Borisover,et al.  Hydrogen bonds formed by methyl groups of acetonitrile: Infrared and calorimetric study , 1994 .

[82]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[83]  D. Sangeetha,et al.  Development and validation of a UPLC method for the determination of duloxetine hydrochloride residues on pharmaceutical manufacturing equipment surfaces , 2011, Pharmaceutical methods.

[84]  Alexander H Schmidt Validated HPLC Method for the Determination of Residues of Acetaminophen, Caffeine, and Codeine Phosphate on Swabs Collected from Pharmaceutical Manufacturing Equipment in Support of Cleaning Validation , 2006 .