Comparison between Pt/TiO2/Pt and Pt/TaOX/TaOY/Pt based bipolar resistive switching devices

Nonvolatile memories have emerged in recent years and have become a leading candidate towards replacing dynamic and static random-access memory devices. In this article, the performances of TiO2 and TaO2 nonvolatile memristive devices were compared and the factors that make TaO2 memristive devices better than TiO2 memristive devices were studied. TaO2 memristive devices have shown better endurance performances (108 times more switching cycles) and faster switching speed (5 times) than TiO2 memristive devices. Electroforming of TaO2 memristive devices requires ~4.5 times less energy than TiO2 memristive devices of a similar size. The retention period of TaO2 memristive devices is expected to exceed 10 years with sufficient experimental evidence. In addition to comparing device performances, this article also explains the differences in physical device structure, switching mechanism, and resistance switching performances of TiO2 and TaO2 memristive devices. This article summarizes the reasons that give TaO2 memristive devices the advantage over TiO2 memristive devices, in terms of electroformation, switching speed, and endurance.

[1]  Jaan Aarik,et al.  Properties of tantalum oxide thin films grown by atomic layer deposition , 1995 .

[2]  Tuo-Hung Hou,et al.  Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode , 2010 .

[3]  Weidong Yu,et al.  Bipolar resistive switching properties of microcrystalline TiO2 thin films deposited by pulsed laser deposition , 2009 .

[4]  H. Takagi,et al.  Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure , 2009 .

[5]  Jordi Suñé,et al.  Field-effect control of breakdown paths in HfO2 based MIM structures , 2013, Microelectron. Reliab..

[6]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[7]  P. Zhou,et al.  Resistive Memory Switching of $\hbox{Cu}_{x}\hbox{O}$ Films for a Nonvolatile Memory Application , 2008, IEEE Electron Device Letters.

[8]  Qiangfei Xia,et al.  Impact of geometry on the performance of memristive nanodevices , 2011, Nanotechnology.

[9]  John F. Conley,et al.  Resistive switching in zinc–tin-oxide , 2013 .

[10]  Peng Zhou,et al.  Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode , 2009 .

[11]  Amit Prakash,et al.  TaOx-based resistive switching memories: prospective and challenges , 2013, Nanoscale Research Letters.

[12]  Sung-Yool Choi,et al.  A low-temperature-grown TiO2-based device for the flexible stacked RRAM application , 2010, Nanotechnology.

[13]  John Paul Strachan,et al.  Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching , 2009 .

[14]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[15]  Miguel Melendez-Lira,et al.  Effect of electrode type in the resistive switching behaviour of TiO2 thin films , 2013 .

[16]  Yoshihisa Fujisaki,et al.  Overview of emerging semiconductor non-volatile memories , 2012, IEICE Electron. Express.

[17]  L. Chua Memristor-The missing circuit element , 1971 .

[18]  J. Aarik,et al.  Resistive switching in RuO2/TiO2/RuO2 MIM structures for non-volatile memory application , 2010, The Eighth International Conference on Advanced Semiconductor Devices and Microsystems.

[19]  Yoshio Nishi,et al.  Electric field dependent switching and degradation of Resistance Random Access Memory , 2009, 2009 IEEE International Integrated Reliability Workshop Final Report.

[20]  Liu Su,et al.  Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM , 2014 .

[21]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[22]  Victor Yi-Qian Zhuo,et al.  Improved Switching Uniformity and Low-Voltage Operation in ${\rm TaO}_{x}$-Based RRAM Using Ge Reactive Layer , 2013, IEEE Electron Device Letters.

[23]  Zhang Xiao Resistive switching characteristics of Ni/HfO2/Pt ReRAM , 2012 .

[24]  Feng Zhang,et al.  Realization of rectifying and resistive switching behaviors of TiO2 nanorod arrays for nonvolatile memory , 2011 .

[25]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[26]  A. M. Sergent,et al.  Defect dominated charge transport in amorphous Ta2O5 thin films , 2000 .

[27]  Chenming Hu,et al.  Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode , 2007 .

[28]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[29]  Hyang Keun Yoo,et al.  Dielectric-breakdown-like forming process in the unipolar resistance switching of Ta2O5−x thin films , 2012 .

[30]  Serge Blonkowski,et al.  Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales , 2007 .

[31]  John Paul Strachan,et al.  Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching , 2010, Advanced materials.

[32]  U-In Chung,et al.  Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[33]  C. Toumazou,et al.  A Versatile Memristor Model With Nonlinear Dopant Kinetics , 2011, IEEE Transactions on Electron Devices.

[34]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[35]  N. Gergel-Hackett,et al.  Switching mechanisms in flexible solution-processed TiO2 memristors , 2012, Nanotechnology.

[36]  J. Nickel,et al.  Memristor Resistance Modulation for Analog Applications , 2012, IEEE Electron Device Letters.

[37]  Hyunsang Hwang,et al.  Resistive Switching Characteristics of Solution-Processed Transparent TiO x for Nonvolatile Memory Application , 2010 .

[38]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[39]  Shinhyun Choi,et al.  Comprehensive physical model of dynamic resistive switching in an oxide memristor. , 2014, ACS nano.

[40]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[41]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[42]  Ali Khiat,et al.  Resistive switching of oxygen enhanced TiO2 thin-film devices , 2013 .

[43]  P. Vontobel,et al.  Writing to and reading from a nano-scale crossbar memory based on memristors , 2009, Nanotechnology.

[44]  C. Yoshida,et al.  High speed resistive switching in Pt∕TiO2∕TiN film for nonvolatile memory application , 2007 .

[45]  Z. Wei,et al.  Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism , 2008, 2008 IEEE International Electron Devices Meeting.

[46]  Frederick T. Chen,et al.  Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals , 2009 .

[47]  Gunnar A. Niklasson,et al.  A frequency response and transient current study of β-Ta2O5: Methods of estimating the dielectric constant, direct current conductivity, and ion mobility , 1999 .

[48]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[49]  Kinam Kim,et al.  In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure , 2013, Nature Communications.

[50]  Hyang Keun Yoo,et al.  Forming time of conducting channels in double-layer Pt/Ta2O5/TaOx/Pt and single-layer Pt/TaOx/Pt resistance memories , 2013 .

[51]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[52]  D. Batas,et al.  A Memristor SPICE Implementation and a New Approach for Magnetic Flux-Controlled Memristor Modeling , 2011, IEEE Transactions on Nanotechnology.

[53]  Haider A. F. Almurib,et al.  Modeling of bipolar resistive switching of a nonlinear MISM memristor , 2015 .

[54]  Insung Kim,et al.  Asymmetric bipolar resistive switching in solution-processed Pt/TiO2/W devices , 2010 .

[55]  R E Thurstans,et al.  The electroformed metal-insulator-metal structure: a comprehensive model , 2002 .

[56]  F. Zeng,et al.  Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices , 2013 .

[57]  Dong-Su Ko,et al.  Effect of the electrode materials on the resistive switching of Ti4O7 , 2012 .

[58]  Byungnam Kahng,et al.  Conversion from unipolar to bipolar resistance switching by inserting Ta2O5 layer in Pt/TaOx/Pt cells , 2011 .

[59]  Myoung-Jae Lee,et al.  Modeling for bipolar resistive memory switching in transition-metal oxides , 2010 .

[60]  Jin Pyo Hong,et al.  Hysteretic bipolar resistive switching characteristics in TiO2/TiO2−x multilayer homojunctions , 2009 .

[61]  Partha Bhattacharyya,et al.  A journey towards reliability improvement of TiO2 based Resistive Random Access Memory: A review , 2014, Microelectron. Reliab..

[62]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[63]  H. Okamoto,et al.  O-Ti (Oxygen-Titanium) , 2001 .

[64]  Peter Desnoyers,et al.  Write Endurance in Flash Drives: Measurements and Analysis , 2010, FAST.

[65]  Frederick T. Chen,et al.  Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering , 2009 .

[66]  D. Morgan,et al.  A model for filament growth and switching in amorphous oxide films , 1970 .

[67]  H. Hwang,et al.  HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO3 Schottky junction for nonvolatile memory application , 2007 .

[68]  R. Waser,et al.  Memristors: Devices, Models, and Applications , 2012 .

[69]  James A. Bain,et al.  Elimination of high transient currents and electrode damage during electroformation of TiO2-based resistive switching devices , 2012 .

[70]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[71]  Chuandong Li,et al.  Memristor-based RRAM with applications , 2012, Science China Information Sciences.

[72]  John Paul Strachan,et al.  The switching location of a bipolar memristor: chemical, thermal and structural mapping , 2011, Nanotechnology.

[73]  J. Yang,et al.  A compact modeling of TiO2-TiO2–x memristor , 2013 .

[74]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[75]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[76]  Hyunsang Hwang,et al.  Resistive switching characteristics of ultra-thin TiOx , 2011 .

[77]  R. Waser,et al.  Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions , 2010 .

[78]  Tae Kuk Ko,et al.  Resistive switching characteristics of TiN/MnO2/Pt memory devices , 2010 .

[79]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[80]  S. Maikap,et al.  Improvement of high-κ Ta2O5-based resistive switching memory using Ti interfacial layer , 2011, Proceedings of 2011 International Symposium on VLSI Technology, Systems and Applications.

[81]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[82]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[83]  Han Zhengsheng,et al.  Characteristics of HfO2/Hf-based bipolar resistive memories , 2015 .

[84]  Jin Pyo Hong,et al.  Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films , 2008 .

[85]  R A Collins,et al.  Electroforming of MIM thin-film devices in air at atmospheric pressure , 1971 .

[86]  T. Nandha Kumar,et al.  Comparison on TiO2 and TaO2 based bipolar resistive switching devices , 2014, 2014 2nd International Conference on Electronic Design (ICED).

[87]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[88]  S. Haddad,et al.  A Temperature-Accelerated Method to Evaluate Data Retention of Resistive Switching Nonvolatile Memory , 2008, IEEE Electron Device Letters.

[89]  Nagaiyar Krishnamurthy,et al.  The O-Ta (Oxygen-Tantalum) system , 1996 .

[90]  A. Pirovano,et al.  Non-volatile memory technologies: emerging concepts and new materials , 2004 .

[91]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[92]  Tingkun Gu,et al.  Role of oxygen vacancies in TiO2-based resistive switches , 2013 .

[93]  K. Terabe,et al.  A Ta2O5 solid-electrolyte switch with improved reliability , 2007, 2007 IEEE Symposium on VLSI Technology.

[94]  Kyoung-Rok Cho,et al.  Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[95]  Uri C. Weiser,et al.  TEAM: ThrEshold Adaptive Memristor Model , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[96]  L. Kihlborg,et al.  Arne Magnéli, 1914–1996 , 1997 .

[97]  B Kahng,et al.  Forming mechanism of the bipolar resistance switching in double-layer memristive nanodevices , 2012, Nanotechnology.

[98]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[99]  T. Hou,et al.  Electrode dependence of filament formation in HfO2 resistive-switching memory , 2011 .

[100]  Sung-Mo Kang,et al.  Memristors: Devices, Models, and Applications [Scanning the Issue] , 2012, Proc. IEEE.

[101]  J. Yang,et al.  Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High‐Performance Memristor , 2011, Advanced materials.

[102]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[103]  Doo Seok Jeong,et al.  Resistive switching in a Pt/TiO2/Pt thin film stack -- a candidate for a non-volatile ReRAM , 2007 .

[104]  Mathias Schubert,et al.  Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry , 2000 .

[105]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[106]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[107]  Sibylle Gemming,et al.  Resistive switching in thermally oxidized titanium films , 2013, 2013 International Semiconductor Conference Dresden - Grenoble (ISCDG).

[108]  Koukou Suu,et al.  Forming-free Resistance Random Access Memory Using Ta 2 O 5 /TaO x Bi-layer Prepared by Magnetron Sputtering Method , 2012 .

[109]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[110]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[111]  John Paul Strachan,et al.  Spectromicroscopy of tantalum oxide memristors , 2011 .

[112]  Hsien-Chin Chiu,et al.  Retraction: Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaOx interface , 2013, Nanoscale Research Letters.

[113]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[114]  John F. Conley,et al.  Bipolar resistive switching in an amorphous zinc tin oxide memristive device , 2013 .