The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence

[1]  Xinren Dai,et al.  Investigation Into Different Wood Formation Mechanisms Between Angiosperm and Gymnosperm Tree Species at the Transcriptional and Post-transcriptional Level , 2021, Frontiers in Plant Science.

[2]  Jue Ruan,et al.  The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution , 2021, Nature Plants.

[3]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[4]  P. Szövényi,et al.  Charting the genomic landscape of seed-free plants , 2021, Nature Plants.

[5]  Yun-Xin Fu,et al.  Stairway Plot 2: demographic history inference with folded SNP frequency spectra , 2020, Genome Biology.

[6]  N. S. Allen,et al.  Contrasting bacteriome of the hornwort Leiosporoceros dussii in two nearby sites with emphasis on the hornwort-cyanobacterial symbiosis , 2020, Symbiosis.

[7]  H. Schneider,et al.  Allopolyploid speciation accompanied by gene flow in a tree fern. , 2020, Molecular biology and evolution.

[8]  Cédric Feschotte,et al.  RepeatModeler2 for automated genomic discovery of transposable element families , 2020, Proceedings of the National Academy of Sciences.

[9]  L. Forrest,et al.  Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis , 2020, Plant Systematics and Evolution.

[10]  Michael S. Barker,et al.  Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts , 2020, Nature Plants.

[11]  Y. van de Peer,et al.  The hornwort genome and early land plant evolution , 2020, Nature Plants.

[12]  L. Mandrich,et al.  Enzyme Promiscuous Activity: How to Define it and its Evolutionary Aspects. , 2019, Protein and peptide letters.

[13]  T. Demura,et al.  Involvement of VNS NAC-domain transcription factors in tracheid formation in Pinus taeda. , 2019, Tree physiology.

[14]  D. Soltis,et al.  The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly , 2019, Scientific Reports.

[15]  C. Feng,et al.  Nuclear loci developed from multiple transcriptomes yield high resolution in phylogeny of scaly tree ferns (Cyatheaceae) from China and Vietnam. , 2019, Molecular phylogenetics and evolution.

[16]  D. Silvestro,et al.  Slowly but surely: gradual diversification and phenotypic evolution in the hyper-diverse tree fern family Cyatheaceae , 2019, Annals of botany.

[17]  J. Der,et al.  Expression Level Dominance and Homeolog Expression Bias in Recurrent Origins of the Allopolyploid Fern Polypodium hesperium , 2019, American Fern Journal.

[18]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2019, Bioinform..

[19]  Alexey M. Kozlov,et al.  ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models , 2019, bioRxiv.

[20]  Davide Heller,et al.  eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses , 2018, Nucleic Acids Res..

[21]  Yves Van de Peer,et al.  wgd—simple command line tools for the analysis of ancient whole-genome duplications , 2018, Bioinform..

[22]  David Sankoff,et al.  Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. , 2018, Nature Genetics.

[23]  Y. Hu,et al.  A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families. , 2018, Molecular phylogenetics and evolution.

[24]  Shujun Ou,et al.  Assessing genome assembly quality using the LTR Assembly Index (LAI) , 2018, Nucleic acids research.

[25]  Shifeng Cheng,et al.  Genome-wide organellar analyses from the hornwort Leiosporoceros dussii show low frequency of RNA editing , 2018, PloS one.

[26]  Dongxiao Liu,et al.  Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus , 2018, BMC Genomics.

[27]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[28]  Michael S. Barker,et al.  Fern genomes elucidate land plant evolution and cyanobacterial symbioses , 2018, Nature Plants.

[29]  Y. An,et al.  Dynamic DNA Methylation in Plant Growth and Development , 2018, International journal of molecular sciences.

[30]  C. Delwiche,et al.  The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization , 2018, Cell.

[31]  Y. Li,et al.  Genome Analysis of the Ancient Tracheophyte Selaginella tamariscina Reveals Evolutionary Features Relevant to the Acquisition of Desiccation Tolerance. , 2018, Molecular plant.

[32]  Lixi Jiang,et al.  Arabidopsis thaliana NOP10 is required for gametophyte formation. , 2018, Journal of integrative plant biology.

[33]  Liying Kuo,et al.  Organelle Genome Inheritance in Deparia Ferns (Athyriaceae, Aspleniineae, Polypodiales) , 2018, Front. Plant Sci..

[34]  Timothy R. Fallon,et al.  The biosynthetic origin of psychoactive kavalactones in kava , 2018, bioRxiv.

[35]  S. Dong,et al.  On the Recognition of Gymnosphaera As a Distinct Genus in Cyatheaceae1 , 2018, Annals of the Missouri Botanical Garden.

[36]  Michael S. Barker,et al.  Multiple large-scale gene and genome duplications during the evolution of hexapods , 2018, Proceedings of the National Academy of Sciences.

[37]  Mark N. Puttick,et al.  The timescale of early land plant evolution , 2018, Proceedings of the National Academy of Sciences.

[38]  Charlie Longtine,et al.  Antimicrobial activity of ethanolic and aqueous extracts of medicinally used tree ferns Alsophila cuspidata and Cyathea microdonta , 2018 .

[39]  Richard D. Hayes,et al.  The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. , 2018, The Plant journal : for cell and molecular biology.

[40]  Ping Liu,et al.  A genome for gnetophytes and early evolution of seed plants , 2018, Nature Plants.

[41]  Yuehong Yan,et al.  Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns , 2017, GigaScience.

[42]  T. Demura,et al.  Transcription Factors VND1-VND3 Contribute to Cotyledon Xylem Vessel Formation1[OPEN] , 2017, Plant Physiology.

[43]  Christian R. Boehm,et al.  Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome , 2017, Cell.

[44]  L. Berke,et al.  The Huperzia selago Shoot Tip Transcriptome Sheds New Light on the Evolution of Leaves , 2017, Genome biology and evolution.

[45]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[46]  Heng Li,et al.  Minimap2: fast pairwise alignment for long DNA sequences , 2017 .

[47]  J. Ralph,et al.  Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins1[OPEN] , 2017, Plant Physiology.

[48]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[49]  Neva C. Durand,et al.  De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds , 2016, Science.

[50]  Michael A. Sundue,et al.  A 4000-species dataset provides new insight into the evolution of ferns. , 2016, Molecular phylogenetics and evolution.

[51]  D. R. Farrar,et al.  A community‐derived classification for extant lycophytes and ferns , 2016 .

[52]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[53]  Daisy E. Pagete An end-to-end assembly of the Aedes aegypti genome , 2016, 1605.04619.

[54]  James W. Clark,et al.  Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. , 2016, The New phytologist.

[55]  Robert J. Schmitz,et al.  On the origin and evolutionary consequences of gene body DNA methylation , 2016, Proceedings of the National Academy of Sciences.

[56]  B. Gaut,et al.  Evolutionary patterns of genic DNA methylation vary across land plants , 2016, Nature Plants.

[57]  James B. Beck,et al.  Searching for Diamonds in the Apomictic Rough: A Case Study Involving Boechera lignifera (Brassicaceae) , 2015 .

[58]  Haibao Tang,et al.  Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum , 2015, Nature.

[59]  C. Delwiche,et al.  The Evolutionary Origin of a Terrestrial Flora , 2015, Current Biology.

[60]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[61]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[62]  C. N. Stewart,et al.  The evolutionary history of ferns inferred from 25 low-copy nuclear genes. , 2015, American journal of botany.

[63]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[64]  Qing-Yong Yang,et al.  De novo plant genome assembly based on chromatin interactions: a case study of Arabidopsis thaliana. , 2015, Molecular plant.

[65]  Anders Albrechtsen,et al.  ANGSD: Analysis of Next Generation Sequencing Data , 2014, BMC Bioinformatics.

[66]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[67]  Wei Chen,et al.  Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism , 2014, Nature Genetics.

[68]  Nature Plants , 2014, Nature Genetics.

[69]  D. Penny,et al.  Two New Fern Chloroplasts and Decelerated Evolution Linked to the Long Generation Time in Tree Ferns , 2014, Genome biology and evolution.

[70]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[71]  T. Demura,et al.  Contribution of NAC Transcription Factors to Plant Adaptation to Land , 2014, Science.

[72]  Charles-Elie Rabier,et al.  Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. , 2014, Molecular biology and evolution.

[73]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[74]  Amborella Genome The Amborella Genome and the Evolution of Flowering Plants , 2013, Science.

[75]  Xiangshan Zhou,et al.  Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production , 2013, Microbial Cell Factories.

[76]  Nikolaos S. Alachiotis,et al.  SweeD: Likelihood-Based Detection of Selective Sweeps in Thousands of Genomes , 2013, Molecular biology and evolution.

[77]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[78]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[79]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[80]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[81]  S. Aubourg,et al.  Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine1[W] , 2012, Plant Physiology.

[82]  S. Mansfield,et al.  Whole plant cell wall characterization using solution-state 2D NMR , 2012, Nature Protocols.

[83]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[84]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[85]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[86]  M. Bunzel,et al.  Chemical characterization of Klason lignin preparations from plant-based foods. , 2011, Journal of agricultural and food chemistry.

[87]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[88]  L. Lucia,et al.  Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry. , 2011, Analytical chemistry.

[89]  J. Weng,et al.  Independent Recruitment of an O-Methyltransferase for Syringyl Lignin Biosynthesis in Selaginella moellendorffii[W] , 2011, Plant Cell.

[90]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[91]  Michael S. Barker,et al.  The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants , 2011, Science.

[92]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[93]  Felix Krueger,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[94]  Hasan Jameel,et al.  Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. , 2011, Tree physiology.

[95]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[96]  K. Pryer,et al.  ABRUPT DECELERATION OF MOLECULAR EVOLUTION LINKED TO THE ORIGIN OF ARBORESCENCE IN FERNS , 2010, Evolution; international journal of organic evolution.

[97]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[98]  M. Lynch Evolution of the mutation rate. , 2010, Trends in genetics : TIG.

[99]  T. Demura,et al.  VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System1[W] , 2010, Plant Physiology.

[100]  D. Zilberman,et al.  Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation , 2010, Science.

[101]  L. F. Viccini,et al.  Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. , 2010, The New phytologist.

[102]  J. Weng,et al.  Convergent Evolution of Syringyl Lignin Biosynthesis via Distinct Pathways in the Lycophyte Selaginella and Flowering Plants[C][W] , 2010, Plant Cell.

[103]  J. Dean,et al.  An Improved Method of RNA Isolation from Loblolly Pine (P. taeda L.) and Other Conifer Species , 2010, Journal of visualized experiments : JoVE.

[104]  David H. Alexander,et al.  Fast model-based estimation of ancestry in unrelated individuals. , 2009, Genome research.

[105]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[106]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[107]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[108]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[109]  F. Pomar,et al.  The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. , 2009, Physiologia plantarum.

[110]  J. Ralph,et al.  Solution-state 2D NMR of Ball-milled Plant Cell Wall Gels in DMSO-d6 , 2008, BioEnergy Research.

[111]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[112]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[113]  T. Demura,et al.  SND1, a NAC Domain Transcription Factor, Is a Key Regulator of Secondary Wall Synthesis in Fibers of Arabidopsis[W] , 2006, The Plant Cell Online.

[114]  Nello Cristianini,et al.  CAFE: a computational tool for the study of gene family evolution , 2006, Bioinform..

[115]  Tetsuro Mimura,et al.  Transcription switches for protoxylem and metaxylem vessel formation. , 2005, Genes & development.

[116]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[117]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[118]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[119]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[120]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[121]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[122]  Bernard R. Baum,et al.  Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components , 1997, Plant Molecular Biology Reporter.

[123]  B. A. Thomas,et al.  DISTRIBUTION OF LIGNIN DERIVATIVES IN PLANTS , 1985 .

[124]  H. Fukuda,et al.  Vascular tissue development in plants. , 2019, Current topics in developmental biology.

[125]  T. Demura,et al.  Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation , 2017, Journal of experimental botany.

[126]  He Xingjin,et al.  Isolation of three chemical constituents from Alsophila spinulosa stalks for the first time. , 2011 .

[127]  Gong Jia-wen Primary Discussion on the Bacteriostatic Activity of Alsophila spinulosa Leaves and Stems , 2007 .

[128]  Amie D. Sluiter,et al.  Determination of Structural Carbohydrates and Lignin in Biomass , 2004 .

[129]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[130]  C. Lapierre,et al.  New insights into the molecular architecture of hardwood lignins by chemical degradative methods , 1995 .

[131]  N. Nakato Cytological studies on the genus Cyathea in Japan. , 1989 .