Addition theorems for B functions and other exponentially declining functions

In this paper addition theorems are derived for a special class of exponentially declining functions, the so‐called B functions Bmn,l (α,r) [E. Filter and E. O. Steinborn, Phys. Rev. A 18, 1 (1978)]. Although these B functions have a relatively complicated analytical structure they nevertheless have some mathematical properties that are particularly advantageous in connection with multicenter problems. Also, all the commonly occurring exponentially declining functions like, for instance, bound‐state hydrogen eigenfunctions and Slater‐type functions, can be expressed by simple finite sums of B functions. Consequently, addition theorems for these functions can also be written down immediately. The various addition theorems for B functions are derived by applying suitable generating differential operators to the well‐known addition theorem of the special B function Bm−l,l, which is that solution of the modified Helmholtz equation that is irregular at the origin and regular at infinity [E. J. Weniger and E. O...

[1]  E. Hylleraas Über den Grundzustand des Heliumatoms , 1928 .

[2]  E. J. Weniger,et al.  The Fourier transforms of some exponential‐type basis functions and their relevance to multicenter problems , 1983 .

[3]  A. W. Niukkanen Fourier transforms of atomic orbitals. I. Reduction to four-dimensional harmonics and quadratic transformations , 1984 .

[4]  B. Bayman A generalization of the spherical harmonic gradient formula , 1978 .

[5]  E. J. Weniger,et al.  Numerical properties of the convolution theorems of B functions , 1983 .

[6]  Grotendorst,et al.  Efficient evaluation of infinite-series representations for overlap, two-center nuclear attraction, and Coulomb integrals using nonlinear convergence accelerators. , 1986, Physical review. A, General physics.

[7]  H. Silverstone Expansion about an Arbitrary Point of Three‐Dimensional Functions Involving Spherical Harmonics by the Fourier‐Transform Convolution Theorem , 1967 .

[8]  E. J. Weniger,et al.  A simple derivation of the addition theorems of the irregular solid harmonics, the Helmholtz harmonics, and the modified Helmholtz harmonics , 1985 .

[9]  Ying‐Nan Chiu Irreducible Tensor Expansion of Solid Spherical Harmonic‐Type Operators in Quantum Mechanics , 1964 .

[10]  R. A. Sack,et al.  Three‐Dimensional Addition Theorem for Arbitrary Functions Involving Expansions in Spherical Harmonics , 1964 .

[11]  Klaus Ruedenberg,et al.  Rotation and Translation of Regular and Irregular Solid Spherical Harmonics , 1973 .

[12]  E. Steinborn,et al.  A matrix representation of the translation operator with respect to a basis set of exponentially declining functions , 1980 .

[13]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[14]  S. L. Sobolev,et al.  Applications of functional analysis in mathematical physics , 1963 .

[15]  L. Biedenharn Angular momentum in quantum physics , 1981 .

[16]  Klaus Ruedenberg Bipolare Entwicklungen, Fouriertransformation und Molekulare Mehrzentren-Integrale , 1967 .

[17]  S. Stein ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS , 1961 .

[18]  Harrison Shull,et al.  NATURAL ORBITALS IN THE QUANTUM THEORY OF TWO-ELECTRON SYSTEMS , 1956 .

[19]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[20]  E. Filter,et al.  Translations of fields represented by spherical-harmonic expansions for molecular calculations , 1975 .

[21]  O. Cruzan Translational addition theorems for spherical vector wave functions , 1962 .

[22]  F. D. Santos Finite range approximations in direct transfer reactions , 1973 .

[23]  M. A. Rashid Simple expressions for radial functions appearing in the expansions of Ym1l1 (∇)F m2l2(r) and ∇2nYm1l1(∇)F m2l2 (r) , 1986 .

[24]  R. R. Sharma Expansion of a function about a displaced center for multicenter integrals: A general and closed expression for the coefficients in the expansion of a Slater orbital and for overlap integrals , 1976 .

[25]  Richard K. Moats,et al.  Expansion of a function about a displaced center , 1977 .

[26]  Generating Functions for Spherical Harmonics Part I: Three-Dimensional Harmonics , 1974 .

[27]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[28]  M. A. Rashid Expansion of a function about a displaced center , 1981 .

[29]  E. J. Weniger,et al.  New representations for the spherical tensor gradient and the spherical delta function , 1983 .

[30]  G. Shortley,et al.  The Theory of Atomic Spectra , 1935 .

[31]  J. Hougen,et al.  Angular Momentum Theory for Diatomic Molecules , 1975 .

[32]  E. Steinborn,et al.  Symmetrie und analytische Struktur der Additionstheoreme räumlicher Funktionen und der Mehrzentren-Molekülintegrale über beliebige Atomfunktionen , 1979 .

[33]  Noboru Suzuki Comment on ``Compact expression for Löwdin's alpha function'' [J. Math. Phys. 26, 940 (1985)] , 1987 .

[34]  L. Goldfarb,et al.  Neutron transfer in heavy ion reactions , 1966 .

[35]  M. E. Rose The Electrostatic Interaction of Two Arbitrary Charge Distributions , 1958 .

[36]  A. W. Niukkanen Generating differential operators for the basis functions in the variational LCAO‐type methods , 1984 .

[37]  Noboru Suzuki,et al.  Simple calculation of Löwdin’s alpha‐function , 1984 .

[38]  R. R. Sharma Alpha‐Function Technique for Two‐Center Integrals , 1968 .

[39]  M. Rotenberg Theory and Application of Sturmian Functions , 1970 .

[40]  Otto Steinborn Poly-polar expansions for regular and irregular spherical harmonics in molecules , 1969 .

[41]  Michael Danos,et al.  Multipole Matrix Elements of the Translation Operator , 1965 .

[42]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[43]  Noboru Suzuki Simple calculation of Löwdin’s alpha function. II. Easier procedure for evaluating bK k(L M‖l ), and vanishing of hn,2n−i(L M‖l ) for special values of i and n , 1985 .

[44]  T. Shibuya,et al.  Molecular orbitals in momentum space , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  K. J. Duff A computational form for löwdin's alpha function , 1971 .

[46]  Anthony J. Stone,et al.  Properties of the regular and irregular solid harmonics , 1977 .

[47]  The Evaluation of Partial Wave Integrals in the Born Approximation , 1961 .

[48]  A. A. Antone,et al.  Compact expression for Löwdin’s alpha function , 1985 .

[49]  On a new class of gradient formulas in the angular momentum theory , 1983 .

[50]  Grotendorst,et al.  Unified analytical treatment of overlap, two-center nuclear attraction, and Coulomb integrals of B functions via the Fourier-transform method. , 1986, Physical review. A, General physics.

[51]  The convergence of the Rayleigh-Ritz Method in quantum chemistry: I. the criteria of convergence , 1977 .

[52]  J. P. Dahl,et al.  Expansion theorems for solid spherical harmonics , 1965 .

[53]  E. J. Weniger Weakly convergent expansions of a plane wave and their use in Fourier integrals , 1985 .

[54]  E. Steinborn,et al.  Extremely compact formulas for molecular two-center one-electron integrals and Coulomb integrals over Slater-type atomic orbitals , 1978 .

[55]  M. P. Barnett,et al.  The evaluation of integrals occurring in the theory of molecular structure. Parts I & II , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[56]  C. Weatherford,et al.  ETO Multicenter Molecular Integrals , 1982 .

[57]  R. Nozawa Bipolar Expansion of Screened Coulomb Potentials, Helmholtz' Solid Harmonics, and their Addition Theorems , 1966 .