EVOLUTION OF GENOME SIZE IN PINES (PINUS) AND ITS LIFE‐HISTORY CORRELATES: SUPERTREE ANALYSES

Abstract Genome size has been suggested to be a fundamental biological attribute in determining life‐history traits in many groups of organisms. We examined the relationships between pine genome sizes and pine phylogeny, environmental factors (latitude, elevation, annual rainfall), and biological traits (latitudinal and elevational ranges, seed mass, minimum generation time, interval between large seed crops, seed dispersal mode, relative growth rate, measures of potential and actual invasiveness, and level of rarity). Genome sizes were determined for 60 pine taxa and then combined with published values to make a dataset encompassing 85 species, or 70% of species in the genus. Supertrees were constructed using 20 published source phylogenies. Ancestral genome size was estimated as 32 pg. Genome size has apparently remained stable or increased over evolutionary time in subgenus Strobus, while it has decreased in most subsections in subgenus Pinus. We analyzed relationships between genome size and life‐history variables using cross‐species correlations and phylogenetically independent contrasts derived from supertree constructions. The generally assumed positive relation between genome size and minimum generation time could not be confirmed in phylogenetically controlled analyses. We found that the strongest correlation was between genome size and seed mass. Because the growth quantities specific leaf area and leaf area ratio (and to a lesser extent relative growth rate) are strongly negatively related to seed mass, they were also negatively correlated with genome size. Northern latitudinal limit was negatively correlated with genome size. Invasiveness, particularly of wind‐dispersed species, was negatively associated with both genome size and seed mass. Seed mass and its relationships with seed number, dispersal mode, and growth rate contribute greatly to the differences in life‐history strategies of pines. Many life‐history patterns are therefore indirectly, but consistently, associated with genome size.

[1]  D. Bullock,et al.  Nuclear DNA amount, growth, and yield parameters in maize , 1994, Theoretical and Applied Genetics.

[2]  D. Tomback,et al.  The evolution of bird-dispersed pines , 1990, Evolutionary Ecology.

[3]  A. H. Sparrow,et al.  Correlations between nuclear volume, cell volume and DNA content in meristematic cells of herbaceous angiosperms , 1973, Experientia.

[4]  H. Veregin Goode's World Atlas , 2005 .

[5]  Harold A. Mooney,et al.  Ecology of invasive plants: state of the art. , 2005 .

[6]  D. Soltis,et al.  Evolution of DNA amounts across land plants (embryophyta). , 2005, Annals of botany.

[7]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[8]  I. Leitch,et al.  Genome downsizing in polyploid plants , 2004 .

[9]  M. Savontaus,et al.  Abstracts of Papers Presented at the Sixteenth Meeting of the Scandinavian Association of Geneticists June 15–18, 1996, Turku, Finland , 2004 .

[10]  Mark Williamson,et al.  Alien plants in checklists and floras: towards better communication between taxonomists and ecologists , 2004 .

[11]  M. Borchert,et al.  A comparative analysis of seed and cone characteristics and seed-dispersal strategies of three pines in the subsection Sabinianae , 2003, Plant Ecology.

[12]  J. Bennetzen,et al.  Mechanisms and rates of genome expansion and contraction in flowering plants , 2002, Genetica.

[13]  J. Wendel,et al.  Feast and famine in plant genomes , 2002, Genetica.

[14]  W. Dvorak,et al.  Assessing evolutionary relationships of pines in the Oocarpae and Australes subsections using RAPD markers , 2000, New Forests.

[15]  Mark Westoby,et al.  A leaf-height-seed (LHS) plant ecology strategy scheme , 1998, Plant and Soil.

[16]  S. Harris,et al.  Noncoding chloroplast DNA variation in Mexican pines , 1995, Theoretical and Applied Genetics.

[17]  D. Govindaraju,et al.  Phylogenetic analysis of pines using ribosomal DNA restriction fragment length polymorphisms , 1992, Plant Systematics and Evolution.

[18]  B. Schirone,et al.  A taxonomic analysis of seed proteins inPinus spp.(Pinaceae) , 1991, Plant Systematics and Evolution.

[19]  W. Klaus,et al.  Mediterranean pines and their history , 1989, Plant Systematics and Evolution.

[20]  T. N. Khoshoo,et al.  Genome size in gymnosperms , 2004, Plant Systematics and Evolution.

[21]  A. Szmidt,et al.  The phylogenetic position of the endemic flat-needle pinePinus krempfii (Pinaceae) from Vietnam, based on PCR-RFLP analysis of chloroplast DNA , 2004, Plant Systematics and Evolution.

[22]  H. Synge,et al.  The biological aspects of rare plant conservation , 2004, Vegetatio.

[23]  A. Szmidt,et al.  Chloroplast DNA-based phylogeny of AsianPinus species (Pinaceae) , 2004, Plant Systematics and Evolution.

[24]  Alexander E Vinogradov,et al.  Selfish DNA is maladaptive: evidence from the plant Red List. , 2003, Trends in genetics : TIG.

[25]  D. Soltis,et al.  Evolution of genome size in the angiosperms. , 2003, American journal of botany.

[26]  A. Liston,et al.  Phylogenetics of Pinus Subsections Cembroides and Nelsoniae Inferred from cpDNA Sequences , 2003 .

[27]  D. Richardson,et al.  INVASIVENESS OF CONIFERS: EXTENT AND POSSIBLE MECHANISMS , 2003 .

[28]  J. G. Seijo,et al.  Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). , 2003, American journal of botany.

[29]  K. Arumuganathan,et al.  Nonadditive changes in genome size during allopolyploidization in the wheat (aegilops-triticum) group. , 2003, The Journal of heredity.

[30]  M. Moran Arguments for rejecting the sequential Bonferroni in ecological studies , 2003 .

[31]  M. Westoby,et al.  Latitude, seed predation and seed mass , 2003 .

[32]  S. B. Wall Effects of seed size of wind‐dispersed pines (Pinus) on secondary seed dispersal and the caching behavior of rodents , 2003 .

[33]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[34]  S. B. Wall MASTING IN ANIMAL-DISPERSED PINES FACILITATES SEED DISPERSAL , 2002 .

[35]  M. Westoby,et al.  ECOLOGICAL STRATEGIES : Some Leading Dimensions of Variation Between Species , 2002 .

[36]  J. L. Gittleman,et al.  The (Super)Tree of Life: Procedures, Problems, and Prospects , 2002 .

[37]  T. Parchman,et al.  DIVERSIFYING COEVOLUTION BETWEEN CROSSBILLS AND BLACK SPRUCE ON NEWFOUNDLAND , 2002, Evolution; international journal of organic evolution.

[38]  M. Franco,et al.  Population structure of Pinus nelsoni Shaw, an endemic pinyon pine in Tamaulipas, Mexico , 2002 .

[39]  T. Kajimoto Factors affecting seedling recruitment and survivorship of the Japanese subalpine stone pine, Pinus pumila, after seed dispersal by nutcrackers , 2002, Ecological Research.

[40]  Derrick J. Zwickl,et al.  Increased taxon sampling is advantageous for phylogenetic inference. , 2002, Systematic biology.

[41]  Dmitri A Petrov,et al.  Mutational equilibrium model of genome size evolution. , 2002, Theoretical population biology.

[42]  Spencer J Johnston,et al.  Genomic consequences of interspecific Pinus spp. hybridization , 2002 .

[43]  M. Rejmánek,et al.  Toward a Causal Explanation of Plant Invasiveness: Seedling Growth and Life‐History Strategies of 29 Pine (Pinus) Species , 2002, The American Naturalist.

[44]  K. Nkongolo,et al.  Identification and characterization of RAPD markers inferring genetic relationships among Pine species. , 2002, Genome.

[45]  David D. Ackerly,et al.  Variation in nuclear DNA content across environmental gradients: a quantile regression analysis , 2002 .

[46]  T. Gregory,et al.  A BIRD'S‐EYE VIEW OF THE C‐VALUE ENIGMA: GENOME SIZE, CELL SIZE, AND METABOLIC RATE IN THE CLASS AVES , 2002, Evolution; international journal of organic evolution.

[47]  A. Liston,et al.  Variation in the nrDNA ITS of Pinus subsection Cembroides: implications for molecular systematic studies of pine species complexes. , 2001, Molecular phylogenetics and evolution.

[48]  K. Pistrick,et al.  Phenology and Genome Size Variation in Allium L. ‐ a Tight Correlation? , 2001 .

[49]  E. Brainerd,et al.  PATTERNS OF GENOME SIZE EVOLUTION IN TETRAODONTIFORM FISHES , 2001, Evolution; international journal of organic evolution.

[50]  L. Auckland,et al.  Stability of nuclear DNA content among divergent and isolated populations of Fraser fir , 2001 .

[51]  David D. Ackerly,et al.  Flammability and serotiny as strategies: correlated evolution in pines , 2001 .

[52]  Xiao‐Ru Wang,et al.  DNA content for Asian pines parallels New World relatives , 2001 .

[53]  W. Dvorak,et al.  Flow Cytometric Analysis of DNA Content for Tropical and Temperate New World Pines , 2000 .

[54]  H. Price,et al.  Sunflower (Helianthus annuus) Leaves Contain Compounds that Reduce Nuclear Propidium Iodide Fluorescence , 2000 .

[55]  I. Leitch,et al.  Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates , 2000 .

[56]  M. Westoby,et al.  Seed mass and seedling dimensions in relation to seedling establishment , 2000, Oecologia.

[57]  L. Poggio,et al.  Relationships among Genome Size, Environmental Conditions and Geographical Distribution in Natural Populations of NW Patagonian Species of Berberis L. (Berberidaceae) , 2000 .

[58]  D. Richardson Ecology and Biogeography of Pinus , 2000 .

[59]  Joseph L. Thorley,et al.  RadCon: phylogenetic tree comparison and consensus , 2000, Bioinform..

[60]  G. Palomino,et al.  Variation of Nuclear DNA Content in the Biflorus Species of Lonchocarpus (Leguminosae) , 2000 .

[61]  H. Yoshimaru,et al.  Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20-RPS18 spacer, and TRNV intron sequences. , 1999, American journal of botany.

[62]  D. Galbraith,et al.  Reference standards for determination of DNA content of plant nuclei. , 1999, American journal of botany.

[63]  R. Gregory,et al.  The modulation of DNA content: proximate causes and ultimate consequences. , 1999, Genome research.

[64]  E. Álvarez-Buylla,et al.  Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. , 1999, Molecular phylogenetics and evolution.

[65]  G. Rehfeldt Systematics and genetic structure of Washoe pine : Applications in conservation genetics , 1999 .

[66]  B. Murray Nuclear DNA Amounts in Gymnosperms , 1998 .

[67]  H. Rogers,et al.  Genome Size is Negatively Correlated with Altitude in Natural Populations of Dactylis glomerata , 1998 .

[68]  D. Ohri Genome Size Variation and Plant Systematics , 1998 .

[69]  I. Leitch,et al.  DNA Amounts in Two Samples of Angiosperm Weeds , 1998 .

[70]  L Nardi,et al.  Plant Genome Size Estimation by Flow Cytometry: Inter-laboratory Comparison , 1998 .

[71]  C. De Pace,et al.  Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction , 1998, Theoretical and Applied Genetics.

[72]  Andy Purvis,et al.  Phylogenetic supertrees: Assembling the trees of life. , 1998, Trends in ecology & evolution.

[73]  A. Farjon World Checklist and Bibliography of Conifers , 1998 .

[74]  R. Price Phylogeny and systematics of Pinus , 1998 .

[75]  J. Keeley,et al.  Evolution of life histories in Pinus , 1998 .

[76]  D. Richardson,et al.  Ecology and biogeography of Pinus: an introduction , 1998 .

[77]  B. Murray,et al.  Intra- and interspecific variation in genome size in Lathyrus (Leguminosae) , 1997 .

[78]  J. Bennetzen,et al.  Do Plants Have a One-Way Ticket to Genomic Obesity? , 1997, The Plant cell.

[79]  D. Grattapaglia,et al.  Analysis of genetic relationships of Central American and Mexican pines using RAPD markers that distinguish species , 1997 .

[80]  A. Vinogradov NUCLEOTYPIC EFFECT IN HOMEOTHERMS: BODY‐MASS INDEPENDENT RESTING METABOLIC RATE OF PASSERINE BIRDS IS RELATED TO GENOME SIZE , 1997, Evolution; international journal of organic evolution.

[81]  B. Fady,et al.  Study on isozyme variation in Pinus pinea L. : Evidence for low polymorphism , 1997 .

[82]  James F. Jackson,et al.  A Phylogenetic Analysis Of The Southern Pines (Pinus Subsect Australes Loudon): Biogeographical And Ecological Implications , 1997 .

[83]  M. Rejmánek A theory of seed plant invasiveness: The first sketch , 1996 .

[84]  J. Silvertown,et al.  Comparing Plants and Connecting Traits , 1996 .

[85]  M. Westoby,et al.  Comparative ecology of seed size and dispersal , 1996 .

[86]  D. Richardson,et al.  What attributes make some plant species more invasive , 1996 .

[87]  Roderic D. M. Page,et al.  TreeView: an application to display phylogenetic trees on personal computers , 1996, Comput. Appl. Biosci..

[88]  A. Farjon Biodiversity of Pinus (Pinaceae) in Mexico: speciation and palaeo-endemism , 1996 .

[89]  J. Upton,et al.  Geographic variation in leaf, cone and seed morphology of Pinus greggii in navite forests , 1996 .

[90]  A. B. Krupkin,et al.  PHYLOGENETIC ANALYSIS OF THE HARD PINES (PINUS SUBGENUS PINUS, PINACEAE) FROM CHLOROPLAST DNA RESTRICTION SITE ANALYSIS , 1996 .

[91]  G. Bharathan Reproductive development and nuclear DNA content in angiosperms , 1996 .

[92]  M. G. Messina,et al.  Pine genome size diversity and water relations , 1996 .

[93]  H. Ahokas,et al.  Flow-cytometric determination of polyploidy level in spontaneous clones of strawberries , 1996 .

[94]  A. Vinogradov NUCLEOTYPIC EFFECT IN HOMEOTHERMS: BODY‐MASS‐CORRECTED BASAL METABOLIC RATE OF MAMMALS IS RELATED TO GENOME SIZE , 1995, Evolution; international journal of organic evolution.

[95]  F. Bazzaz,et al.  Genome size and high C02 , 1995, Nature.

[96]  M. Greenwood Juvenility and maturation in conifers: current concepts. , 1995, Tree physiology.

[97]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[98]  C. Benkman Wind dispersal capacity of pine seeds and the evolution of different seed dispersal modes in pines , 1995 .

[99]  J. P. Grime,et al.  Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. , 1995 .

[100]  M. Greenwood,et al.  Genetic variation in rooting ability of loblolly pine cuttings: effects of auxin and family on rooting by hypocotyl cuttings. , 1995, Tree physiology.

[101]  D. Francis,et al.  Variation in DNA C value in natural populations of Dactylis glomerata L. , 1994, The New phytologist.

[102]  R. Newton,et al.  Genome size and environmental factors in the genus Pinus , 1993 .

[103]  M. Ragan Phylogenetic inference based on matrix representation of trees. , 1992, Molecular phylogenetics and evolution.

[104]  B. Baum Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees , 1992 .

[105]  J. Malusa Phylogeny and biogeography of the pinyon pines (Pinus subsect. Cembroides). , 1992 .

[106]  U. C. Lavania,et al.  Evolutionary DNA variation in Papaver , 1991 .

[107]  L. López-Mata,et al.  The Pines of Mexico and Central America , 1991 .

[108]  Richard M. Cowling,et al.  Assessing the risk of invasive success in Pinus and Banksia in South African mountain fynbos , 1990 .

[109]  S. Strauss,et al.  RESTRICTION FRAGMENT ANALYSIS OF PINE PHYLOGENY , 1990, Evolution; international journal of organic evolution.

[110]  M. Conkle,et al.  Diversity of Washoe pine and comparisons with allozymes of ponderosa pine races , 1990 .

[111]  K. Thompson Genome size, seed size and germination temperature in herbaceous angiosperms. , 1990 .

[112]  Archana Sharma,et al.  Mitotic cycle duration and its relationship with nuclear DNA content, chromosome number and size and rate of growth in species of Acacia growing under stress. , 1990 .

[113]  D. Nickrent,et al.  An electrophoretic study of representatives of subgenus Diploxylon of Pinus , 1989 .

[114]  R. Newton,et al.  Drought stress responses of microseris species differing in nuclear DNA content , 1989 .

[115]  A. Burt Comparative methods using phylogenetically independent contrasts , 1989 .

[116]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[117]  J. P. Grime,et al.  Intra-population variation in nuclear DNA amount, cell size and growth rate in Poa annua L. , 1989 .

[118]  S. Strauss,et al.  Allozyme differentiation and biosystematics of the Californian closed-cone pines (Pinus subsect. Oocarpae) , 1988 .

[119]  B. McCune ECOLOGICAL DIVERSITY IN NORTH AMERICAN PINES , 1988, American Journal of Botany.

[120]  A. Larson,et al.  DEVELOPMENTAL CORRELATES OF GENOME SIZE IN PLETHODONTID SALAMANDERS AND THEIR IMPLICATIONS FOR GENOME EVOLUTION , 1987, Evolution; international journal of organic evolution.

[121]  D. Francis,et al.  Replicon size, mean rate of DNA replication and the duration of the cell cycle and its component phases in eight monocotyledonous species of contrasting DNA C values , 1987 .

[122]  P. Rudall,et al.  Genome Size Variation in Sisyrinchium L. (Iridaceae) and Its Relationship to Phenotype and Habitat , 1986, Botanical Gazette.

[123]  D. I. Axelrod The Sierra redwood (Sequoiadendron) forest: end of a dynasty , 1986 .

[124]  Lynn Sims,et al.  NUCLEAR DNA CONTENT VARIATION IN HELIANTHUS (ASTERACEAE) , 1985 .

[125]  J. P. Grime,et al.  NUCLEAR DNA CONTENTS, SHOOT PHENOLOGY AND SPECIES CO-EXISTENCE IN A LIMESTONE GRASSLAND COMMUNITY , 1985 .

[126]  S. Strauss,et al.  Seedling Architecture and Life History Evolution in Pines , 1985, The American Naturalist.

[127]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[128]  B. Tiffney Seed Size, Dispersal Syndromes, and the Rise of the Angiosperms: Evidence and Hypothesis , 1984 .

[129]  N. Wheeler,et al.  Biosystematics of the genus Pinus, subsection contortae , 1983 .

[130]  William D. Taylor,et al.  Phenotypic Correlates of Genomic DNA Content in Unicellular Eukaryotes and Other Cells , 1983, The American Naturalist.

[131]  D. Galbraith,et al.  Rapid Flow Cytometric Analysis of the Cell Cycle in Intact Plant Tissues , 1983, Science.

[132]  J. S. Heslop-Harrison,et al.  Nuclear dna amounts in angiosperms. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[133]  H. Price,et al.  Geographic and Ecological Distribution of Genomic DNA Content Variation in Microseris douglasii (Asteraceae) , 1981, Botanical Gazette.

[134]  J. Thirgood Man and the Mediterranean forest , 1981 .

[135]  D. Levin,et al.  Genome Size in Angiosperms: Temperate Versus Tropical Species , 1979, The American Naturalist.

[136]  R. Poynton Report to the Southern African Regional Commission for the Conservation and Utilization of the Soil (SARCCUS) on tree planting in southern Africa. Vol. 2. The eucalypts. , 1979 .

[137]  T. Cavalier-smith,et al.  Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. , 1978, Journal of cell science.

[138]  Kai Larsen,et al.  Flora of Taiwan , 1978 .

[139]  D. Davies,et al.  DNA contents and cell number in relation to seed size in the genus Vicia , 1977, Heredity.

[140]  C. Robison,et al.  ANATOMICALLY PRESERVED SEED CONES OF THE PINACEAE FROM THE EARLY CRETACEOUS OF VIRGINIA , 1977 .

[141]  C. S. Shopmeyer Seeds of woody plants in the United States , 1974 .

[142]  M. Bennett,et al.  Nuclear DNA content and minimum generation time in herbaceous plants , 1972, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[143]  G. Evans,et al.  Mitotic Cycles in Dicotyledons and Monocotyledons , 1971, Nature.

[144]  M. Bennett,et al.  The duration of meiosis , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[145]  E. L. Little Atlas of United States trees. , 1971 .

[146]  N. T. Mirov,et al.  The genus Pinus. , 1968 .

[147]  W. B. Critchfield,et al.  Geographic distribution of the pines of the world , 1966 .

[148]  Hof J van't Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. , 1965, Experimental cell research.

[149]  J. Van't Hof,et al.  A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[150]  W. B. Critchfield Geographic variation in Pinus contorta. , 1957 .

[151]  J. Paul Goode,et al.  Goode's World Atlas , 1953 .

[152]  E. E. M. Loock The pines of Mexico and British Honduras. , 1950 .