Fractional-Order Adaptive Integral Hierarchical Sliding Mode Control Method for High-Speed Linear Motion of Spherical Robot

The development of the spherical robot to meet the requirements of high-speed and high-precision tasks is of great importance. In this study, a fractional-order adaptive integral hierarchical sliding mode controller (F-AIHSMC) is proposed. F-AIHSMC enables the spherical robot to have better controlled performance when facing unknown disturbances and system chattering, which can seriously affect the high-speed and high-precision motion of the spherical robot. We establish the standard dynamic model of the spherical robot for high-speed linear motion first, and then use the feedforward compensation method to compensate the controllable influencing factors in the motion process. According to the standard dynamic model, the integral term and fractional calculus methods are integrated into the hierarchical sliding mode controller, and the adaptive method is used to evaluate and compensate unknown disturbances in the high-speed motion process. In order to verify the efficiency of the proposed F-AIHSMC, we test its control effect using the BYQ-GS spherical robot. The experimental results demonstrate that, compared with the classical hierarchical sliding mode controller and the adaptive hierarchical sliding mode controller, the F-AIHSMC has obvious advantages in response speed, convergence speed, stability and robustness when being applied to the control of high-speed linear motion of spherical robot. Moreover, the advantages of its control performance are more highlighted with the increase of the speed of the spherical robot.

[1]  Wei Sun,et al.  Path following of a class of non-holonomic mobile robot with underactuated vehicle body , 2010 .

[2]  Ming Yue,et al.  Extended state observer-based adaptive hierarchical sliding mode control for longitudinal movement of a spherical robot , 2014 .

[3]  Jianqiang Yi,et al.  Hierarchical Sliding Mode Control for Under-actuated Cranes , 2015 .

[4]  H. Ghariblu A new mobile ball robot-dynamic modeling and simulation , 2015 .

[5]  Wei Zhao,et al.  Sliding Mode Control of Pendulum-Driven Spherical Robots , 2012 .

[6]  Leila Notash,et al.  Adaptive sliding mode control with uncertainty estimator for robot manipulators , 2010 .

[7]  Chih-Lyang Hwang,et al.  Software/Hardware-Based Hierarchical Finite-Time Sliding-Mode Control With Input Saturation for an Omnidirectional Autonomous Mobile Robot , 2019, IEEE Access.

[8]  Panfeng Huang,et al.  Discrete-Time Sliding Mode Control for Deployment of Tethered Space Robot With Only Length and Angle Measurement , 2020, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Guanghui Sun,et al.  Fractional-order sliding mode control for deployment of tethered spacecraft system , 2019 .

[10]  Qingxuan Jia,et al.  A family of spherical mobile robot: Driving ahead motion control by feedback linearization , 2008, 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics.

[11]  Il Hong Suh,et al.  Marathoner tracking algorithms for a high speed mobile robot , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Ming Yue,et al.  Adaptive control of an underactuated spherical robot with a dynamic stable equilibrium point using hierarchical sliding mode approach , 2014 .

[13]  Ha Thi Kim Duyen,et al.  Modeling and Integral Hierarchical Sliding-Mode Control for 2D Ship-mounted Crane , 2019, 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP).

[14]  Arun D. Mahindrakar,et al.  Geometric Controllability and Stabilization of Spherical Robot Dynamics , 2015, IEEE Transactions on Automatic Control.

[15]  Ping Hu,et al.  SLIDING MODE ROBUST CONTROL FOR TWO-WHEELED MOBILE ROBOT WITH LOWER CENTER OF GRAVITY , 2011 .

[16]  Li Mantian,et al.  Linear Motion Control of Two-pendulums-driven Spherical Robot , 2011 .

[17]  Mehmet Önder Efe,et al.  Integral sliding mode control of a quadrotor with fractional order reaching dynamics , 2011 .

[18]  Mansour Karkoub,et al.  Hierarchical Fuzzy Sliding-Mode Adaptive Control for the Trajectory Tracking of Differential-Driven Mobile Robots , 2018, Int. J. Fuzzy Syst..

[19]  Yun Chen,et al.  Event-trigger-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems. , 2019, ISA transactions.

[20]  Viet-Anh Le,et al.  An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes , 2019, Int. J. Autom. Comput..

[21]  赵伟,et al.  Decoupled sliding mode control for the climbing motion of spherical mobile robots , 2012 .

[22]  Karavaev Yury,et al.  Stabilization of the motion of a spherical robot using feedbacks , 2019, Applied Mathematical Modelling.

[23]  Qiang Zhan Research Progress and Development Trend of Spherical Mobile Robots , 2019 .

[24]  Yansheng Li,et al.  Structure Design and Force Analysis for a Novel Spherical Robot , 2017 .

[25]  Jordan M. Berg,et al.  Feedback regularization and geometric PID control for trajectory tracking of mechanical systems: Hoop robots on an inclined plane , 2016, 2017 American Control Conference (ACC).

[26]  Samir Ladaci,et al.  On Fractional Adaptive Control , 2006 .

[27]  Lihua Xie,et al.  Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity , 2008, Autom..

[28]  Ahmet Dumlu,et al.  Design of a fractional-order adaptive integral sliding mode controller for the trajectory tracking control of robot manipulators , 2018, J. Syst. Control. Eng..

[29]  Guanghui Sun,et al.  Adaptive Hierarchical Sliding Mode Control with Input Saturation for Attitude Regulation of Multi-satellite Tethered System , 2017 .