A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk

Parameter estimation is a critical problem in modeling biological pathways. It is difficult because of the large number of parameters to be estimated and the limited experimental data available. In this paper, we propose a decompositional approach to parameter estimation. It exploits the structure of a large pathway model to break it into smaller components, whose parameters can then be estimated independently. This leads to significant improvements in computational efficiency. We present our approach in the context of Hybrid Functional Petri Net modeling and evolutionary search for parameter value estimation. However, the approach can be easily extended to other modeling frameworks and is independent of the search method used. We have tested our approach on a detailed model of the Akt and MAPK pathways with two known and one hypothesized crosstalk mechanisms. The entire model contains 84 unknown parameters. Our simulation results exhibit good correlation with experimental data, and they yield positive evidence in support of the hypothesized crosstalk between the two pathways.

[1]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[2]  Calin Belta,et al.  Hybrid Modeling and Simulation of Biomolecular Networks , 2001, HSCC.

[3]  Wolfgang Reisig,et al.  A Primer in Petri Net Design , 1992, Springer Compass International.

[4]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[5]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[6]  Gerald P. Murphy,et al.  LNCaP Model of Human Prostatic Carcinoma1 , 2006 .

[7]  Stefan Schuster,et al.  Topological analysis of metabolic networks based on Petri net theory , 2003, Silico Biol..

[8]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[9]  A Sorribas,et al.  Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways. , 1989, Mathematical biosciences.

[10]  L. Cantley,et al.  Phosphatidylinositol 3‐kinase , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[11]  Asim Khwaja,et al.  Apoptosis: Akt is more than just a Bad kinase , 1999, Nature.

[12]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[13]  M. H. Cobb,et al.  Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338 , 2000, Current Biology.

[14]  Atsushi Doi,et al.  Biopathways representation and simulation on hybrid functional Petri net , 2003, Silico Biol..

[15]  C. Heldin,et al.  Signal Transduction: Multiple Pathways, Multiple Options for Therapy , 2001, Stem cells.

[16]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.

[17]  G. Murphy,et al.  LNCaP model of human prostatic carcinoma. , 1983, Cancer research.

[18]  S. Kimura,et al.  A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. , 2003, The Biochemical journal.

[19]  Xiaoyi Jiang,et al.  A Novel Parameter Decomposition Approach to Faithful Fitting of Quadric Surfaces , 2005, DAGM-Symposium.

[20]  Ming Chen,et al.  Quantitative Petri net model of gene regulated metabolic networks in the cell , 2003, Silico Biol..

[21]  K. M. Nicholson,et al.  The protein kinase B/Akt signalling pathway in human malignancy. , 2002, Cellular signalling.

[22]  Claire J. Tomlin,et al.  Lateral Inhibition through Delta-Notch Signaling: A Piecewise Affine Hybrid Model , 2001, HSCC.

[23]  Ashish Tiwari,et al.  Symbolic Systems Biology: Hybrid Modeling and Analysis of Biological Networks , 2004, HSCC.

[24]  Magnus Bosse,et al.  Regulation of Raf-Akt Cross-talk , 2002, The Journal of Biological Chemistry.

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  Monika Heiner,et al.  Steady state analysis of metabolic pathways using Petri nets , 2003, Silico Biol..

[27]  B. Vanhaesebroeck,et al.  The PI3K-PDK1 connection: more than just a road to PKB. , 2000, The Biochemical journal.

[28]  Masao Nagasaki,et al.  Genomic Object Net: I. A platform for modelling and simulating biopathways. , 2003, Applied bioinformatics.

[29]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[30]  Frank McCormick,et al.  Akt activation by growth factors is a multiple-step process: the role of the PH domain , 1998, Oncogene.

[31]  Takashi Tsuruo,et al.  Involvement of 3-Phosphoinositide-dependent Protein Kinase-1 in the MEK/MAPK Signal Transduction Pathway* , 2004, Journal of Biological Chemistry.

[32]  Vincent Moulton,et al.  Reconstructing Metabolic Networks Using Interval Analysis , 2005, WABI.

[33]  Brian C. Williams,et al.  Decompositional, Model-based Learning and its Analogy to Diagnosis , 1998, AAAI/IAAI.

[34]  Scott A. Smolka,et al.  Efficient Modeling of Excitable Cells Using Hybrid Automata , 2005 .