Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control

[1]  Ravi P. Agarwal,et al.  ON THE NUMBER OF POSITIVE PERIODIC SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS AND POPULATION MODELS , 2005 .

[2]  Wan-Tong Li,et al.  Positive periodic solutions of a class of delay differential system with feedback control , 2004, Appl. Math. Comput..

[3]  M. Symonds,et al.  Evolutionary Ecology , 2004, Evolutionary Ecology.

[4]  Samir H. Saker,et al.  Oscillation and global attractivity in a periodic delay hematopoiesis model , 2003 .

[5]  Samir H. Saker,et al.  Oscillation and Global Attractivity in Haematopoiesis Model with Delay Time , 2001, Appl. Math. Comput..

[6]  Samir H. Saker,et al.  Oscillation and global attractivity in a periodic Nicholson's blowflies model , 2002 .

[7]  Xianhua Tang,et al.  A 3/2 stability result for a regulated logistic growth model , 2002 .

[8]  Bo Zhang,et al.  Positive periodic solutions of functional dierential equations and population models , 2002 .

[9]  Samir H. Saker,et al.  Oscillation and Global Attractivity in a Nonlinear Delay Periodic Model of Population Dynamics , 2001 .

[10]  Samir H. Saker,et al.  Oscillation and Global Attractivity in a Nonlinear Delay Periodic Model of Respiratory Dynamics , 2001 .

[11]  Liusheng Liao Feedback Regulation of a Logistic Growth with Variable Coefficients , 2001 .

[12]  Jurang Yan,et al.  Global attractivity and oscillation in a nonlinear delay equation , 2001 .

[13]  杨帆,et al.  EXISTENCE AND GLOBAL ATTRACTIVITY OF POSITIVE PERIODIC SOLUTION OF A LOGISTIC GROWTH SYSTEM WITH FEEDBACK CONTROL AND DEVIATING ARGUMENTS , 2001 .

[14]  Asymptotic Behavior of Solutions of Differential Equations with Variable Delays , 2000 .

[15]  Linear stability criteria for population models with periodically perturbed delays , 2000, Journal of mathematical biology.

[16]  Yongkun Li,et al.  Existence and global attractivity of a positive periodic solution of a class of delay differential equation , 1998 .

[17]  C. Qian,et al.  Oscillation and Global Attractivity in a Periodic Delay Equation , 1996, Canadian Mathematical Bulletin.

[18]  C. Qian Global Attractivity in Nonlinear Delay Differential Equations , 1996 .

[19]  B. S. Lalli,et al.  Necessary and sufficient conditions for the oscillations of a multiplicative delay logistic equation , 1995 .

[20]  B. S. Lalli,et al.  On a periodic delay population model , 1994 .

[21]  K. Gopalsamy,et al.  FEEDBACK REGULATION OF LOGISTIC GROWTH , 1993 .

[22]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[23]  G. Ladas,et al.  Oscillation Theory of Delay Differential Equations: With Applications , 1992 .

[24]  B. S. Lalli,et al.  Oscillatory and asymptotic behaviour of a multiplicative delay logistic equation , 1992 .

[25]  Kondalsamy Gopalsamy,et al.  Global attractivity and oscillations in a periodic delay-logistic equation , 1990 .

[26]  Mustafa R. S. Kulenovic,et al.  Environmental periodicity and time delays in a “food-limited” population model , 1990 .

[27]  V. Lakshmikantham,et al.  Oscillation Theory of Differential Equations With Deviating Arguments , 1987 .

[28]  G. Rosen Time delays produced by essential nonlinearity in population growth models , 1987 .

[29]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[30]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[31]  R M Nisbet,et al.  Population dynamics in a periodically varying environment. , 1976, Journal of theoretical biology.

[32]  F. Browder Nonlinear functional analysis , 1970 .

[33]  S. Lefschetz Stability of nonlinear control systems , 1966 .

[34]  Leo F. Boron,et al.  Positive solutions of operator equations , 1964 .

[35]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[36]  A. Nicholson,et al.  Supplement: the Balance of Animal Populations , 1933 .