A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice

It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.

Johannes Schwarz | Julia Fischer | Valérie Gailus-Durner | Wolfgang Wurst | Simon E. Fisher | Andreas Zimmer | Martin Klingenspor | Markus Ollert | Helmut Fuchs | Martin Hrabé de Angelis | Victor Wiebe | Svante Pääbo | Rudolf Morgenstern | Wolfgang Enard | Thomas Klopstock | Thomas Arendt | Martina K. Brückner | Holger Schulz | Kurt Hammerschmidt | Leticia Quintanilla-Martinez | Eckhard Wolf | Lore Becker | Claudia Dalke | Jochen Graw | H. Fuchs | M. Angelis | B. Nickel | S. Pääbo | D. Busch | E. Wolf | W. Wurst | W. Enard | S. Fisher | K. Hammerschmidt | M. Groszer | T. Giger | V. Wiebe | C. Schreiweis | C. Winter | H. Schulz | T. Arendt | J. Fischer | M. Somel | S. Hölter | M. Kallnik | V. Gailus-Durner | L. Quintanilla‐Martinez | M. Klingenspor | A. Zimmer | B. Ivandic | J. Rozman | J. Schwarz | T. Klopstock | M. Ollert | S. Gehre | J. Favor | J. Graw | R. Morgenstern | N. Ehrhardt | I. Bolle | Birgit Nickel | Julia Calzada-Wack | Birgit Rathkolb | Jan Rozman | Thure Adler | Dirk H. Busch | Boris Ivandic | Matthias Groszer | E. Kling | R. Sohr | T. Blass | M. Brückner | L. Becker | U. Müller | T. Adler | A. Aguilar | J. Calzada-Wack | C. Dalke | W. Hans | G. Hölzlwimmer | A. Javaheri | S. Kalaydjiev | Sandra Kunder | I. Mossbrugger | B. Naton | I. Rácz | B. Rathkolb | A. Schrewe | Jack Favor | Thomas Giger | Wolfgang Hans | Beatrix Naton | Anja Schrewe | Christine Winter | Sabine M. Hölter | Nicole Ehrhardt | Mehmet Somel | Reinhard Sohr | Ines Bolle | Gabriele Hölzlwimmer | Anahita Javaheri | Eva Kling | Sandra Kunder | Svetoslav Kalaydjiev | Sabine Gehre | Torsten Blass | Christiane Schreiweis | Uwe Müller | Antonio Aguilar | Magdalena Kallnik | Ilona Moßbrugger | Ildikó Racz | U. Müller

[1]  Jianzhi Zhang,et al.  Accelerated protein evolution and origins of human-specific features: Foxp2 as an example. , 2002, Genetics.

[2]  Anatol C. Kreitzer,et al.  Striatal Plasticity and Basal Ganglia Circuit Function , 2008, Neuron.

[3]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[4]  C. A. French,et al.  Generation of mice with a conditional Foxp2 null allele , 2007, Genesis.

[5]  Giovanna Rizzo,et al.  Basal ganglia and language: phonology modulates dopaminergic release , 2005, Neuroreport.

[6]  Philip Tucker,et al.  Multiple Domains Define the Expression and Regulatory Properties of Foxp1 Forkhead Transcriptional Repressors* , 2003, Journal of Biological Chemistry.

[7]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Leah Krubitzer,et al.  The Magnificent Compromise: Cortical Field Evolution in Mammals , 2007, Neuron.

[9]  D. Viggiano,et al.  Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder , 2003, Neuroscience & Biobehavioral Reviews.

[10]  G. Bernardi,et al.  Synaptic plasticity in the basal ganglia: A similar code for physiological and pathological conditions , 2008, Progress in Neurobiology.

[11]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[12]  R. Turner,et al.  Language Control in the Bilingual Brain , 2006, Science.

[13]  Philip Lieberman,et al.  Toward an Evolutionary Biology of Language , 2006 .

[14]  N. Sykes,et al.  Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. , 2005, American journal of human genetics.

[15]  Ajit Varki,et al.  Human uniqueness: genome interactions with environment, behaviour and culture , 2008, Nature Reviews Genetics.

[16]  D. Geschwind,et al.  High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. , 2007, American journal of human genetics.

[17]  M. Mishkin,et al.  FOXP2 and the neuroanatomy of speech and language , 2005, Nature Reviews Neuroscience.

[18]  G. Ehret Infant Rodent Ultrasounds – A Gate to the Understanding of Sound Communication , 2005, Behavior genetics.

[19]  M. Mishkin,et al.  Language fMRI abnormalities associated with FOXP2 gene mutation , 2003, Nature Neuroscience.

[20]  W. Fitch The evolution of speech: a comparative review , 2000, Trends in Cognitive Sciences.

[21]  Erhard Rahm,et al.  FUNC: a package for detecting significant associations between gene sets and ontological annotations , 2007, BMC Bioinformatics.

[22]  L. H. Roberts Evidence for the laryngeal source of ultrasonic and audible cries of rodents , 1975 .

[23]  R. Reep,et al.  Conservation and diversity of Foxp2 expression in muroid rodents: Functional implications , 2009, The Journal of comparative neurology.

[24]  C. Scharff,et al.  Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X , 2007, PLoS biology.

[25]  P. Remy,et al.  Language processing within the striatum: evidence from a PET correlation study in Huntington's disease. , 2008, Brain : a journal of neurology.

[26]  J. Buxbaum,et al.  Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Karl-Hans Englmeier,et al.  Systematic, standardized and comprehensive neurological phenotyping of inbred mice strains in the German Mouse Clinic , 2006, Journal of Neuroscience Methods.

[28]  P. Lieberman On the nature and evolution of the neural bases of human language. , 2002, American journal of physical anthropology.

[29]  Simon E. Fisher,et al.  Localisation of a gene implicated in a severe speech and language disorder , 1997, Nature Genetics.

[30]  Steve D. M. Brown,et al.  Rodent models of genetic disease. , 2003, Current opinion in genetics & development.

[31]  L. H. Roberts,et al.  The rodent ultrasound production mechanism. , 1975, Ultrasonics.

[32]  H. Fuchs,et al.  Screening for dysmorphological abnormalities—a powerful tool to isolate new mouse mutants , 2000, Mammalian Genome.

[33]  Kaoru Takahashi,et al.  Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum , 2003, Journal of neuroscience research.

[34]  E. Jarvis,et al.  Learned Birdsong and the Neurobiology of Human Language , 2004, Annals of the New York Academy of Sciences.

[35]  Mariko Y Momoi,et al.  Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells , 2008, Proceedings of the National Academy of Sciences.

[36]  F. Holsboer,et al.  The modified hole board as a differential screen for behavior in rodents , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[37]  W. Dobyns,et al.  Genetic links between brain development and brain evolution , 2005, Nature Reviews Genetics.

[38]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[39]  Werner Müller,et al.  Introducing the German Mouse Clinic: open access platform for standardized phenotyping , 2005, Nature Methods.

[40]  A. Monaco,et al.  FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. , 2003, Brain : a journal of neurology.

[41]  M. Hauser,et al.  A paradox in the evolution of primate vocal learning , 2004, Trends in Neurosciences.

[42]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[43]  C. Scharff,et al.  An evolutionary perspective on FoxP2: strictly for the birds? , 2005, Current Opinion in Neurobiology.

[44]  K. Davies,et al.  Functional genetic analysis of mutations implicated in a human speech and language disorder. , 2006, Human molecular genetics.

[45]  R. Passingham,et al.  Oral Dyspraxia in Inherited Speech and Language Impairment and Acquired Dysphasia , 2000, Brain and Language.

[46]  R. Wightman,et al.  Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis 1 Published on the World Wide Web on 27 January 1998. 1 , 1998, Brain Research Reviews.

[47]  M. Lu,et al.  Foxp2 and Foxp1 cooperatively regulate lung and esophagus development , 2007, Development.

[48]  Marc Ansseau,et al.  Dopamine–glutamate reciprocal modulation of release and motor responses in the rat caudate–putamen and nucleus accumbens of “intact” animals , 2005, Brain Research Reviews.

[49]  W. Enard,et al.  Comparative primate genomics. , 2004, Annual review of genomics and human genetics.

[50]  P. Wijchers,et al.  Identification of forkhead transcription factors in cortical and dopaminergic areas of the adult murine brain , 2006, Brain Research.

[51]  A. Monaco,et al.  Molecular evolution of FOXP2, a gene involved in speech and language , 2002, Nature.

[52]  Karl J. Friston,et al.  MRI analysis of an inherited speech and language disorder: structural brain abnormalities. , 2002, Brain : a journal of neurology.

[53]  Karl J. Friston,et al.  Neural basis of an inherited speech and language disorder. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Christopher A Walsh,et al.  Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain , 2003, The Journal of comparative neurology.

[55]  M. Ullman A neurocognitive perspective on language: The declarative/procedural model , 2001, Nature Reviews Neuroscience.

[56]  N. Hessler,et al.  Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context , 2007, The European journal of neuroscience.

[57]  Robert Baker,et al.  Evolutionary Origins for Social Vocalization in a Vertebrate Hindbrain–Spinal Compartment , 2008, Science.

[58]  A. Monaco,et al.  A forkhead-domain gene is mutated in a severe speech and language disorder , 2001, Nature.

[59]  D. Haussler,et al.  An RNA gene expressed during cortical development evolved rapidly in humans , 2006, Nature.

[60]  Weiguo Shu,et al.  Characterization of a New Subfamily of Winged-helix/Forkhead (Fox) Genes That Are Expressed in the Lung and Act as Transcriptional Repressors* , 2001, The Journal of Biological Chemistry.

[61]  Kurt Hammerschmidt,et al.  Constraints in primate vocal production , 2008 .

[62]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[63]  U. Jürgens Neural pathways underlying vocal control , 2002, Neuroscience & Biobehavioral Reviews.

[64]  Steve D. M. Brown,et al.  Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits , 2008, Current Biology.

[65]  F. Vargha-Khadem,et al.  Behavioural analysis of an inherited speech and language disorder: comparison with acquired aphasia. , 2002, Brain : a journal of neurology.