Passive navigation using egomotion estimates

Abstract The goal of this work is to propose a method to solve the problem of passive navigation with visual means. Passive navigation is the ability of an autonomous agent to determine its motion with respect to the environment. The two main egomotion parameters allowing performing passive navigation are the heading direction and the time to collision with the environment. A lot of approaches have been proposed in literature in order to estimate the above parameters, most of which work well only if the motion is a predominant forward translation and small amounts of noise are present in the input data. The method we propose is a two-state approach: matching of features extracted from 2D images of a sequence at different times and egomotion parameter computation. Both algorithms are based on optimization approaches minimizing appropriate energy functions. The novelty of the proposed approach is to formulate the matching energy function in order to englobe invariant cues of the scene. The matching stage recovers correspondences between sparse high interest feature points of two successive images useful to perform the second stage of egomotion parameter estimation. Experimental results obtained in real context show the robustness of the method.

[1]  Yiannis Aloimonos,et al.  Estimating the Heading Direction Using Normal Flow EECTE , 1994 .

[2]  G.-S. Young,et al.  3-D motion estimation using a sequence of noisy stereo images , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  Minas E. Spetsakis,et al.  Optimal Computing Of Structure From Motion Using Point Correspondences In Two Frames , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[6]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  R. Hetherington The Perception of the Visual World , 1952 .

[8]  STEFAN CARLSSON,et al.  Projectively invariant decomposition and recognition of planar shapes , 1993, 1993 (4th) International Conference on Computer Vision.

[9]  Yiannis Aloimonos,et al.  Obstacle Avoidance Using Flow Field Divergence , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ettore Stella,et al.  Mobile robot navigation using egomotion estimates , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[11]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[12]  Shahriar Negahdaripour,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004 .

[13]  Ettore Stella,et al.  A Neural Network for Egomotion Estimation from Optical Flow , 1995, BMVC.

[14]  Ettore Stella,et al.  A high order relaxation labeling neural network for feature matching , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[15]  Kenichi Kanatani Computational cross ratio for computer vision , 1994 .

[16]  B. Bhanu,et al.  Estimating 3D Egomotion from Perspective Image Sequence , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Ramakant Nevatia,et al.  Using Perceptual Organization to Extract 3-D Structures , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  K. Prazdny Determining The Instantaneous Direction Of Motion From Optical Flow Generated By A Curvilinearly Moving Observer , 1981, Other Conferences.

[19]  Marie-Odile Berger,et al.  Using projective geometry to recover planar surfaces in stereovision , 1996, Pattern Recognit..

[20]  Hans P. Moravec,et al.  The Stanford Cart and the CMU Rover , 1983, Proceedings of the IEEE.

[21]  Vincent Torre,et al.  The Accuracy of the Computation of Optical Flow and of the Recovery of Motion Parameters , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Venkataraman Sundareswaran,et al.  Motion Parameter Estimation from Global Flow Field Data , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Berthold K. P. Horn,et al.  COMPUTATIONALLY-EFFICIENT METHODS FO R RECOVERING TRANSLATIONAL MOTIO N , 1987 .

[24]  Larry S. Davis,et al.  Iterative Pose Estimation Using Coplanar Feature Points , 1996, Comput. Vis. Image Underst..

[25]  François G. Meyer Time-to-collision from first-order models of the motion field , 1994, IEEE Trans. Robotics Autom..

[26]  Narendra Ahuja,et al.  TWO-STEP APPROACH TO OPTIMAL MOTION AND STRUCTURE ESTIMATION. , 1987 .