Flexible On-the-Fly Recommendations from Linked Open Data Repositories

Recommender systems help consumers to find products online. But because many content-based systems work with insufficient data, recent research has focused on enhancing item feature information with data from the Linked Open Data cloud. Linked Data recommender systems are usually bound to a predefined set of item features and offer limited opportunities to tune the recommendation model to individual needs. The paper addresses this research gap by introducing the prototype SKOS Recommender (SKOSRec), which produces scalable on-the-fly recommendations through SPARQL-like queries from Linked Data repositories. The SKOSRec query language enables users to obtain constraint-based, aggregation-based and cross-domain recommendations, such that results can be adapted to specific business or customer requirements.

[1]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[2]  Jeff Z. Pan,et al.  Querying the Semantic Web with Preferences , 2006, SEMWEB.

[3]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[4]  Victor Anthony Arrascue Ayala,et al.  Extending SPARQL for Recommendations , 2014, SWIM.

[5]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[6]  Xin Jin,et al.  Semantically Enhanced Collaborative Filtering on the Web , 2003, EWMF.

[7]  A. Felfernig,et al.  A Short Survey of Recommendation Technologies in Travel and Tourism , 2006 .

[8]  Abraham Bernstein,et al.  The Fundamentals of iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks , 2007, ISWC/ASWC.

[9]  Tommaso Di Noia,et al.  Top-N recommendations from implicit feedback leveraging linked open data , 2013, IIR.

[10]  Fabien L. Gandon,et al.  Discovery hub: on-the-fly linked data exploratory search , 2013, I-SEMANTICS '13.

[11]  Peter Vojtás,et al.  Enhancing Recommender System with Linked Open Data , 2013, FQAS.

[12]  Markus Zanker,et al.  Linked open data to support content-based recommender systems , 2012, I-SEMANTICS '12.

[13]  Georgia Koutrika,et al.  FlexRecs: expressing and combining flexible recommendations , 2009, SIGMOD Conference.

[14]  Sylvie Ranwez,et al.  Semantic Measures Based on RDF Projections: Application to Content-Based Recommendation Systems , 2013, OTM Conferences.

[15]  Loren Terveen,et al.  PHOAKS: a system for sharing recommendations , 1997, CACM.

[16]  Thomas Lukasiewicz,et al.  Preference Queries with Ceteris Paribus Semantics for Linked Data , 2015, OTM Conferences.

[17]  Tommaso Di Noia,et al.  Exploiting the web of data in model-based recommender systems , 2012, RecSys.

[18]  Rong Zheng,et al.  REQUEST: A Query Language for Customizing Recommendations , 2011, Inf. Syst. Res..

[19]  Joseph G. Davis,et al.  Recommendations using linked data , 2012, PIKM '12.

[20]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[21]  Marcelo Arenas,et al.  Semantics and complexity of SPARQL , 2006, TODS.

[22]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[23]  Raphaël Troncy,et al.  Hybrid event recommendation using linked data and user diversity , 2013, RecSys.

[24]  Gediminas Adomavicius,et al.  Multidimensional Recommender Systems: A Data Warehousing Approach , 2001, WELCOM.