Proof of principle for a molecular 1:2 demultiplexer to function as an autonomously switching theranostic device

Guided by the digital design concepts, we synthesized a two-module molecular demultiplexer (DEMUX) where the output is switched between emission at near IR, and cytotoxic singlet oxygen, with light at 625 nm as the input (I), and acid as the control (c). In the neutral form, the compound fluoresces brightly under excitation at 625 nm, however, acid addition moves the absorption bands of the two modules in opposite directions, resulting in an effective reversal of excitation energy transfer direction, with a concomitant upsurge of singlet oxygen generation and decrease in emission intensity.

[1]  E. Pérez-Inestrosa,et al.  A molecular 1 : 2 demultiplexer. , 2008, Chemical communications.

[2]  M. Amelia,et al.  A simple unimolecular multiplexer/demultiplexer. , 2008, Angewandte Chemie.

[3]  A. Credi Molecules that make decisions. , 2007, Angewandte Chemie.

[4]  A. Shanzer,et al.  A molecular full-adder and full-subtractor, an additional step toward a moleculator. , 2006, Journal of the American Chemical Society.

[5]  Chunhai Fan,et al.  Construction of molecular logic gates with a DNA-cleaving deoxyribozyme. , 2006, Angewandte Chemie.

[6]  Trevor Yann,et al.  Molecular logic: a half-subtractor based on tetraphenylporphyrin. , 2003, Journal of the American Chemical Society.

[7]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[8]  Richard A Lerner,et al.  Prodrug activation gated by a molecular "OR" logic trigger. , 2005, Angewandte Chemie.

[9]  Alberto Credi,et al.  Multistable Self-Assembling System with Three Distinct Luminescence Outputs: Prototype of a Bidirectional Half Subtractor and Reversible Logic Device , 2010 .

[10]  David Margulies,et al.  Fluorescein as a model molecular calculator with reset capability , 2005, Nature materials.

[11]  A. P. de Silva,et al.  Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a "lab-on-a-molecule" prototype. , 2006, Journal of the American Chemical Society.

[12]  Juyoung Yoon,et al.  Fluorescent molecular logic gates using microfluidic devices. , 2008, Angewandte Chemie.

[13]  Galina Melman,et al.  A molecular keypad lock: a photochemical device capable of authorizing password entries. , 2007, Journal of the American Chemical Society.

[14]  A. P. de Silva,et al.  Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (internal charge transfer) chromophores and fluorophores integrated with one- or two-ion receptors. , 2002, Chemistry.

[15]  Uwe Pischel,et al.  Advanced molecular logic with memory function. , 2010, Angewandte Chemie.

[16]  W. Heubner Magische Gifte, Rausch‐ und Betäubungsmittel der neuen Welt. Von Prof. Victor A. Reko. 167 Seiten. Verlag Ferdinand Enke, Stuttgart 1936. Preis geh. RM. 5,–, geb. RM. 6,40 , 1936 .

[17]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[18]  Françoise Remacle,et al.  Intermolecular and intramolecular logic gates , 2001 .

[19]  Erhan Deniz,et al.  Bidirectional switching of near IR emitting boradiazaindacene fluorophores. , 2008, Organic letters.

[20]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[21]  Lu Zhang,et al.  Unimolecular binary half-adders with orthogonal chemical inputs. , 2008, Chemical communications.

[22]  Leila Motiei,et al.  Electrically addressable multistate volatile memory with flip-flop and flip-flap-flop logic circuits on a solid support. , 2010, Angewandte Chemie.

[23]  Konrad Szacilowski,et al.  Biomedical implications of information processing in chemical systems: Non-classical approach to photochemistry of coordination compounds , 2007, Biosyst..

[24]  B. Wilson,et al.  FRET quenching of photosensitizer singlet oxygen generation. , 2009, The journal of physical chemistry. B.

[25]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[26]  Uwe Pischel,et al.  Chemical approaches to molecular logic elements for addition and subtraction. , 2007, Angewandte Chemie.

[27]  Vincenzo Balzani,et al.  Molecular logic circuits. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Ruslan Guliyev,et al.  From virtual to physical: integration of chemical logic gates. , 2011, Angewandte Chemie.

[29]  Ruslan Guliyev,et al.  Selective manipulation of ICT and PET Processes in styryl-Bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions. , 2010, Journal of the American Chemical Society.

[30]  A. Coskun,et al.  Effective PET and ICT switching of boradiazaindacene emission: a unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. , 2005, Organic letters.

[31]  Ying-Wei Yang,et al.  Dual-controlled nanoparticles exhibiting AND logic. , 2009, Journal of the American Chemical Society.

[32]  Itamar Willner,et al.  Concatenated logic gates using four coupled biocatalysts operating in series , 2006, Proceedings of the National Academy of Sciences.

[33]  E. Akkaya,et al.  Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. , 2009, Journal of the American Chemical Society.

[34]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.

[35]  K. Szaciłowski Digital information processing in molecular systems. , 2008, Chemical reviews.

[36]  J. Andréasson,et al.  Molecular 2:1 digital multiplexer. , 2007, Angewandte Chemie.

[37]  Giacomo Bergamini,et al.  Old molecules, new concepts: [Ru(bpy)(3)](2+) as a molecular encoder-decoder. , 2009, Angewandte Chemie.

[38]  C. McCoy,et al.  A molecular photoionic AND gate based on fluorescent signalling , 1993, Nature.