An adaptive approach to information discovery in multi-dimensional wireless sensor networks

Multidimensional WSNs are deployed in complex environments to sense and collect data relating to multiple attributes (multidimensional data). Such networks present unique challenges to data dissemination, data storage and in-network query processing (information discovery). In this paper, we investigate efficient strategies for information discovery in large-scale multidimensional WSNs and propose the Adaptive Multi-Dimensional Multi-Resolution Architecture (A-MDMRA) that efficiently combines “push” and “pull” strategies for information discovery and adapts to variations in the frequencies of events and queries in the network to construct optimal routing structures. We present simulation results showing the optimal routing structure depends on the frequency of events and query occurrence in the network. It also balances push and pull operations in large scale networks enabling significant QoS improvements and energy savings.