Monte Carlo difference schemes for the wave equation
暂无分享,去创建一个
[1] V. V. Nekrutkin,et al. Random processes for classical equations of mathematical physics , 1991, Acta Applicandae Mathematicae.
[2] M. Freidlin. Functional Integration And Partial Differential Equations , 1985 .
[3] O. Nevanlinna. Convergence of Iterations for Linear Equations , 1993 .
[4] J. Halton. Sequential monte carlo techniques for the solution of linear systems , 1994 .
[5] Jukka Tuomela,et al. On the construction of arbitrary order schemes for the many dimensional wave equation , 1994 .
[6] Christian Lécot,et al. A quasi-randomized Runge-Kutta method , 1999, Math. Comput..
[7] J. Miller. Numerical Analysis , 1966, Nature.
[8] Jonathan Goodman,et al. Random-walk interpretations of classical iteration methods , 1995 .
[9] The maximal accuracy of stable difference schemes for the wave equation , 1995 .
[10] George Papanicolaou,et al. Waves and transport , 1998 .
[11] Christian Lécot. Low discrepancy sequences for solving the Boltzmann equation , 1989 .
[12] Patrick Joly,et al. Construction and Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media , 1996 .
[13] A. Booth. Numerical Methods , 1957, Nature.
[14] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[15] Dugald B. Duncan,et al. Jacobi iteration in implicit di erence schemes for the wave equation , 1991 .
[16] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[17] W. Wagner. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .
[18] Karl K. Sabelfeld. Monte Carlo Methods in Boundary Value Problems. , 1991 .
[19] Christian Lécot,et al. A quasi-Monte Carlo method for the Boltzmann equation , 1991 .
[20] H. Amann. Eine Monte-Carlo-Methode mit Informationsspeicherung zur Lösung von elliptischen Randwertproblemen , 1967 .
[21] Denis Talay,et al. Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients , 1994 .
[22] Karl K. Sabelfeld,et al. Monte Carlo simulation of the coagulation processes governed by Smoluchowski equation with random coefficients , 1997, Monte Carlo Methods Appl..