Monte Carlo difference schemes for the wave equation

The paper is concerned with Monte Carlo algorithms for iteration processes. A recurrent procedure is introduced, where Information on various iteration levels is stored. Stability in the sense of boundedness of the correlation matrix of the component estimators is studied. The theory is applied to difference schemes for the wave equation. The results are illustrated by numerical examples. 2000 Mathematics Subject Classification: 65C05

[1]  V. V. Nekrutkin,et al.  Random processes for classical equations of mathematical physics , 1991, Acta Applicandae Mathematicae.

[2]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[3]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[4]  J. Halton Sequential monte carlo techniques for the solution of linear systems , 1994 .

[5]  Jukka Tuomela,et al.  On the construction of arbitrary order schemes for the many dimensional wave equation , 1994 .

[6]  Christian Lécot,et al.  A quasi-randomized Runge-Kutta method , 1999, Math. Comput..

[7]  J. Miller Numerical Analysis , 1966, Nature.

[8]  Jonathan Goodman,et al.  Random-walk interpretations of classical iteration methods , 1995 .

[9]  The maximal accuracy of stable difference schemes for the wave equation , 1995 .

[10]  George Papanicolaou,et al.  Waves and transport , 1998 .

[11]  Christian Lécot Low discrepancy sequences for solving the Boltzmann equation , 1989 .

[12]  Patrick Joly,et al.  Construction and Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media , 1996 .

[13]  A. Booth Numerical Methods , 1957, Nature.

[14]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[15]  Dugald B. Duncan,et al.  Jacobi iteration in implicit di erence schemes for the wave equation , 1991 .

[16]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[17]  W. Wagner A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .

[18]  Karl K. Sabelfeld Monte Carlo Methods in Boundary Value Problems. , 1991 .

[19]  Christian Lécot,et al.  A quasi-Monte Carlo method for the Boltzmann equation , 1991 .

[20]  H. Amann Eine Monte-Carlo-Methode mit Informationsspeicherung zur Lösung von elliptischen Randwertproblemen , 1967 .

[21]  Denis Talay,et al.  Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients , 1994 .

[22]  Karl K. Sabelfeld,et al.  Monte Carlo simulation of the coagulation processes governed by Smoluchowski equation with random coefficients , 1997, Monte Carlo Methods Appl..