Time Domain Representation of Speech Sounds
暂无分享,去创建一个
[1] R. Sengupta,et al. COMPARATIVE STUDY OF FRACTAL BEHAVIOR IN QUASI-RANDOM AND QUASI-PERIODIC SPEECH WAVE MAP , 2001 .
[2] R. W. Wendahl,et al. LARYNGEAL ANALOG SYNTHESIS OF HARSH VOICE QUALITY. , 1963, Folia phoniatrica.
[3] S. Blumstein,et al. Invariant cues for place of articulation in stop consonants. , 1978, The Journal of the Acoustical Society of America.
[4] P. Milenkovic,et al. Least mean square measures of voice perturbation. , 1987, Journal of speech and hearing research.
[5] H. M. Teager,et al. Evidence for Nonlinear Sound Production Mechanisms in the Vocal Tract , 1990 .
[6] M I Miller,et al. SPEECH ENCODING IN THE AUDITORY NERVE: IMPLICATIONS FOR COCHLEAR IMPLANTS a , 1983, Annals of the New York Academy of Sciences.
[7] D. Majumder,et al. Computer Recognition of Vowel Sounds Using a Self-supervised Learning Algorithm , 2014 .
[8] A. Liberman,et al. Acoustic Loci and Transitional Cues for Consonants , 1954 .
[9] William A. Ainsworth,et al. Improved glottal closure instant detector based on linear prediction and standard pitch concept , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.
[10] Gunnar Fant,et al. Acoustic Theory Of Speech Production , 1960 .
[11] R. S. McGowan,et al. An aeroacoustic approach to phonation. , 1988, The Journal of the Acoustical Society of America.
[12] B. Mukherjee,et al. Acoustic Phonetics of Non-Nasal Standard Bengali Vowels: A Spectrographic Study , 1988 .
[13] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[14] Neville H Fletcher. Nonlinearity, complexity, and control in vocal systems , 1996 .
[15] Sankar K. Pal,et al. A self-supervised vowel recognition system , 1980, Pattern Recognit..
[16] Paul Strauss,et al. Clinical Measurement Of Speech And Voice , 2016 .
[17] J. Lucero. A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset. , 1999, The Journal of the Acoustical Society of America.
[18] K. Weierstrass,et al. Über Continuirliche Functionen Eines Reellen Arguments, die für Keinen Werth des Letzteren Einen Bestimmten Differentialquotienten Besitzen , 1988 .
[19] D. Tritton,et al. Physical Fluid Dynamics , 1977 .
[20] D. Veeneman,et al. Automatic glottal inverse filtering from speech and electroglottographic signals , 1985, IEEE Trans. Acoust. Speech Signal Process..
[21] Marc C. Beutnagel,et al. The AT & T NEXT-GEN TTS system , 1999 .
[22] John G. McKenna. Automatic glottal closed-phase location and analysis by Kalman filtering , 2001, SSW.
[23] Ingo R. Titze,et al. Principles of voice production , 1994 .
[24] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[25] N. R. Ganguli,et al. Recognition of unaspirated plosives--A statistical approach , 1980 .
[26] I R Titze,et al. On the relation between subglottal pressure and fundamental frequency in phonation. , 1989, The Journal of the Acoustical Society of America.
[27] T. J. Thomas. A finite element model of fluid flow in the vocal tract , 1986 .
[28] A. Rosenberg. Effect of glottal pulse shape on the quality of natural vowels. , 1969, The Journal of the Acoustical Society of America.
[29] H. Spoendlin. Innervation densities of the cochlea. , 1972, Acta oto-laryngologica.
[30] H. K. Dunn. The Calculation of Vowel Resonances, and an Electrical Vocal Tract , 1950 .
[31] T. Baer,et al. Harmonics-to-noise ratio as an index of the degree of hoarseness. , 1982, The Journal of the Acoustical Society of America.