Time Domain Representation of Speech Sounds

[1]  R. Sengupta,et al.  COMPARATIVE STUDY OF FRACTAL BEHAVIOR IN QUASI-RANDOM AND QUASI-PERIODIC SPEECH WAVE MAP , 2001 .

[2]  R. W. Wendahl,et al.  LARYNGEAL ANALOG SYNTHESIS OF HARSH VOICE QUALITY. , 1963, Folia phoniatrica.

[3]  S. Blumstein,et al.  Invariant cues for place of articulation in stop consonants. , 1978, The Journal of the Acoustical Society of America.

[4]  P. Milenkovic,et al.  Least mean square measures of voice perturbation. , 1987, Journal of speech and hearing research.

[5]  H. M. Teager,et al.  Evidence for Nonlinear Sound Production Mechanisms in the Vocal Tract , 1990 .

[6]  M I Miller,et al.  SPEECH ENCODING IN THE AUDITORY NERVE: IMPLICATIONS FOR COCHLEAR IMPLANTS a , 1983, Annals of the New York Academy of Sciences.

[7]  D. Majumder,et al.  Computer Recognition of Vowel Sounds Using a Self-supervised Learning Algorithm , 2014 .

[8]  A. Liberman,et al.  Acoustic Loci and Transitional Cues for Consonants , 1954 .

[9]  William A. Ainsworth,et al.  Improved glottal closure instant detector based on linear prediction and standard pitch concept , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.

[10]  Gunnar Fant,et al.  Acoustic Theory Of Speech Production , 1960 .

[11]  R. S. McGowan,et al.  An aeroacoustic approach to phonation. , 1988, The Journal of the Acoustical Society of America.

[12]  B. Mukherjee,et al.  Acoustic Phonetics of Non-Nasal Standard Bengali Vowels: A Spectrographic Study , 1988 .

[13]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[14]  Neville H Fletcher Nonlinearity, complexity, and control in vocal systems , 1996 .

[15]  Sankar K. Pal,et al.  A self-supervised vowel recognition system , 1980, Pattern Recognit..

[16]  Paul Strauss,et al.  Clinical Measurement Of Speech And Voice , 2016 .

[17]  J. Lucero A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset. , 1999, The Journal of the Acoustical Society of America.

[18]  K. Weierstrass,et al.  Über Continuirliche Functionen Eines Reellen Arguments, die für Keinen Werth des Letzteren Einen Bestimmten Differentialquotienten Besitzen , 1988 .

[19]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[20]  D. Veeneman,et al.  Automatic glottal inverse filtering from speech and electroglottographic signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[21]  Marc C. Beutnagel,et al.  The AT & T NEXT-GEN TTS system , 1999 .

[22]  John G. McKenna Automatic glottal closed-phase location and analysis by Kalman filtering , 2001, SSW.

[23]  Ingo R. Titze,et al.  Principles of voice production , 1994 .

[24]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[25]  N. R. Ganguli,et al.  Recognition of unaspirated plosives--A statistical approach , 1980 .

[26]  I R Titze,et al.  On the relation between subglottal pressure and fundamental frequency in phonation. , 1989, The Journal of the Acoustical Society of America.

[27]  T. J. Thomas A finite element model of fluid flow in the vocal tract , 1986 .

[28]  A. Rosenberg Effect of glottal pulse shape on the quality of natural vowels. , 1969, The Journal of the Acoustical Society of America.

[29]  H. Spoendlin Innervation densities of the cochlea. , 1972, Acta oto-laryngologica.

[30]  H. K. Dunn The Calculation of Vowel Resonances, and an Electrical Vocal Tract , 1950 .

[31]  T. Baer,et al.  Harmonics-to-noise ratio as an index of the degree of hoarseness. , 1982, The Journal of the Acoustical Society of America.