Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review

Biofouling and scaling are commonly encountered bottlenecks in large and small scale installations of membrane technology for surface-, waste- or seawater treatment. The phenomena can pose persistent operational challenge with substantial economic impacts if they are left unresolved. Effort has been made to reduce the tendency of these detrimental phenomena by improving membrane properties, optimizing operational conditions as well as establishing reliable pretreatment of the feed water. This review places a main focus on the recent advances of low biofouling and scaling thin film composite (TFC) membranes that are incorporated with different types of nanomaterials. In this contribution, the biofouling and scaling phenomena and their negative effects on TFC membranes are first discussed. The recent studies on the preparation of low biofouling and anti-scaling TFC membrane using different nanomaterials are then critically summarized. Current challenges to enhance membrane long-term stability, reliability, and cost efficiency are also highlighted. The applications of nanomaterials in membrane desalination are anticipated to improve resistance properties of TFC membranes against biofouling and scaling and further foster the innovation of sustainable membrane desalination technology.

[1]  Eun-Sik Kim,et al.  Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification , 2012 .

[2]  M. Elimelech,et al.  Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. , 2014, Environmental science & technology.

[3]  Chuyang Y. Tang,et al.  Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. , 2011, ACS nano.

[4]  M. Vieira,et al.  A review of current and emergent biofilm control strategies , 2010 .

[5]  A. Ismail,et al.  Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization , 2014 .

[6]  Shigang S. Qiu,et al.  Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes , 2011 .

[7]  E. Olson Influence of pH on bacterial gene expression , 1993, Molecular microbiology.

[8]  Léna Brunet,et al.  Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. , 2009, Water research.

[9]  A. Ismail,et al.  A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. , 2015, Water research.

[10]  E. Hoek,et al.  Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes , 2009 .

[11]  Chao Song,et al.  Graphene oxide–silver nanoparticle membrane for biofouling control and water purification , 2015 .

[12]  R. Bernstein,et al.  Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization. , 2011, Environmental science & technology.

[13]  The-Vinh Nguyen,et al.  Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. , 2010, Environmental science & technology.

[14]  N. Hilal,et al.  Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. , 2014, Advances in colloid and interface science.

[15]  V. Goncharuk,et al.  Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2 , 2008 .

[16]  V. Adam,et al.  Complexes of Silver(I) Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid and/or Chitosan as Promising Antimicrobial Agents for Vascular Grafts , 2013, International journal of molecular sciences.

[17]  M. Elimelech,et al.  Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. , 2014, Journal of materials chemistry. B.

[18]  Menachem Elimelech,et al.  Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. , 2012, Environmental science & technology.

[19]  Bobby G. Sumpter,et al.  Tunable water desalination across graphene oxide framework membranes. , 2014, Physical chemistry chemical physics : PCCP.

[20]  Masakoto Kanezashi,et al.  Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assis , 2011 .

[21]  Ahmad Fauzi Ismail,et al.  Review: Is interplay between nanomaterial and membrane technology the way forward for desalination? , 2015 .

[22]  M. Elimelech,et al.  Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis , 2013 .

[23]  Yoon-Sik Lee,et al.  Corrigendum to "Antimicrobial effects of silver nanoparticles" (Nanomed Nanotechnol Biol Med. 2007;1:95-101) , 2014 .

[24]  M. Fathizadeh,et al.  Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and sa , 2011 .

[25]  Ahmed S. Al-Amoudi,et al.  Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review , 2010 .

[26]  Menachem Elimelech,et al.  Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. , 2011, ACS applied materials & interfaces.

[27]  Gary L. Amy,et al.  Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer , 2010 .

[28]  Renbi Bai,et al.  Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches , 2010 .

[29]  Cong-jie Gao,et al.  Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes , 2014 .

[30]  H. Matsuyama,et al.  Enhancing the antibiofouling performance of RO membranes using Cu(OH)2 as an antibacterial agent , 2013 .

[31]  Yung-Hua Li,et al.  Cell Density Modulates Acid Adaptation in Streptococcus mutans: Implications for Survival in Biofilms , 2001, Journal of bacteriology.

[32]  Hans-Curt Flemming,et al.  Reverse osmosis membrane biofouling , 1997 .

[33]  Menachem Elimelech,et al.  Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. , 2012, ACS applied materials & interfaces.

[34]  Menachem Elimelech,et al.  Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics , 2000 .

[35]  P. Jha,et al.  Preparation of graphene oxide nano-composite ion-exchange membranes for desalination application , 2014 .

[36]  Zhiqiang Hu,et al.  Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling , 2013 .

[37]  J. Bryers Biofilms and the technological implications of microbial cell adhesion , 1994 .

[38]  Eun-Sik Kim,et al.  Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesop , 2011 .

[39]  Luís F. Melo,et al.  Biofilm formation: hydrodynamic effects on internal diffusion and structure , 1993 .

[40]  C. Bowman,et al.  Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling , 2001 .

[41]  Menachem Elimelech,et al.  Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes , 2001 .

[42]  L. Tang,et al.  Imparting antimicrobial and anti-adhesive properties to polysulfone membranes through modification with silver nanoparticles and polyelectrolyte multilayers. , 2015, Journal of colloid and interface science.

[43]  Cong-jie Gao,et al.  Preparation of monodispersed spherical mesoporous nanosilica–polyamide thin film composite reverse osmosis membranes via interfacial polymerization , 2013 .

[44]  Peiyi Wu,et al.  Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane , 2013 .

[45]  A. Ismail,et al.  Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination , 2015 .

[46]  Bing Zhang,et al.  Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties , 2013 .

[47]  M. Hamilton,et al.  The influence of surface features on bacterial colonization and subsequent substratum chemical changes of 316L stainless steel , 1996 .

[48]  김성호 Hybrid organicinorganic reverse osmosis membrane for bactericidal anti-fouling , 2001 .

[49]  T. Reg. Bott,et al.  Chapter 1 – Industrial Biofouling , 2011 .

[50]  H. Matsuyama,et al.  Improvement of antibiofouling performance of a reverse osmosis membrane through biocide release and adhesion resistance , 2013 .

[51]  Menachem Elimelech,et al.  Antibacterial effects of carbon nanotubes: size does matter! , 2008, Langmuir : the ACS journal of surfaces and colloids.

[52]  Mark Wilf,et al.  The effect of feed ionic strength on salt passage through reverse osmosis membranes , 2005 .

[53]  Chuyang Y. Tang,et al.  Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis , 2012 .

[54]  Yang Liu,et al.  Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment , 2012 .

[55]  Che-Jen Lin,et al.  Effects of operational parameters on cake formation of CaSO4 in nanofiltration. , 2006, Water research.

[56]  Menachem Elimelech,et al.  In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. , 2014, Water research.

[57]  A. C. Wong,et al.  Influence of culture conditions on biofilm formation by Escherichia coli O157:H7. , 1995, International journal of food microbiology.

[58]  M. Rubner,et al.  Two-level antibacterial coating with both release-killing and contact-killing capabilities. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[59]  Jae-Hong Kim,et al.  Analysis of CaSO4 scale formation mechanism in various nanofiltration modules , 1999 .

[60]  Wenji Zheng,et al.  Study on antibacterial mechanism of Mg(OH)2 nanoparticles , 2014 .

[61]  T. Matsuura,et al.  Surface modifications for antifouling membranes. , 2010, Chemical reviews.

[62]  G. Di Bonaventura,et al.  Influence of temperature on biofilm formation by Listeria monocytogenes on various food‐contact surfaces: relationship with motility and cell surface hydrophobicity , 2008, Journal of applied microbiology.

[63]  J. Grossman,et al.  Water desalination across nanoporous graphene. , 2012, Nano letters.

[64]  A. Ismail,et al.  A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination , 2014 .

[65]  N. Hilal,et al.  The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process , 2014 .

[66]  M. V. van Hoek Biofilms , 2013, Virulence.

[67]  N. Hilal,et al.  A comprehensive review on surface modified polymer membranes for biofouling mitigation , 2015 .

[68]  S. Kwak,et al.  Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. , 2001, Environmental science & technology.

[69]  R. J. Petersen,et al.  Composite reverse osmosis and nanofiltration membranes , 1993 .

[70]  Sangho Lee,et al.  Carbon nanotube-based membranes: Fabrication and application to desalination , 2012 .

[71]  R. Hurt,et al.  Ion release kinetics and particle persistence in aqueous nano-silver colloids. , 2010, Environmental science & technology.

[72]  Ben Corry,et al.  Designing carbon nanotube membranes for efficient water desalination. , 2008, The journal of physical chemistry. B.

[73]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[74]  Peiyi Wu,et al.  Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles , 2013 .

[75]  Tongwen Xu,et al.  Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane , 2015 .

[76]  In Chul Kim,et al.  Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance , 2015 .

[77]  A. Fane,et al.  Natural organic matter removal by nanofiltration: effects of solution chemistry on retention of low molar mass acids versus bulk organic matter , 2004 .

[78]  T. Saleh,et al.  Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance , 2012 .

[79]  Yong‐Seok Choi,et al.  The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs , 2014 .

[80]  A. Pervov Scale formation prognosis and cleaning procedure schedules in reverse osmosis systems operation , 1991 .

[81]  J. Warner,et al.  Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. , 2008, Inorganic chemistry.

[82]  B. Min,et al.  Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties , 2007 .

[83]  Rong Wang,et al.  Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization , 2012 .

[84]  R. Sheikholeslami Mixed salts—scaling limits and propensity , 2003 .

[85]  Tai Hyun Park,et al.  Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem , 2003 .

[86]  Marianne,et al.  Chapter 8 Fouling in Nanofiltration , 2010 .

[87]  R. Lovitt,et al.  Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency , 2007 .

[88]  L. Melo,et al.  Particle-bacteria interactions in biofilms , 1992 .

[89]  Menachem Elimelech,et al.  Biofouling in forward osmosis and reverse osmosis: Measurements and mechanisms , 2015 .

[90]  R. Steele,et al.  Optimization , 2005, Encyclopedia of Biometrics.

[91]  D Port,et al.  Bacterial adhesion and biofilms on surfaces , 2008 .

[92]  Xiaohong Shao,et al.  Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. , 2013, ACS nano.

[93]  Sherub Phuntsho,et al.  Influence of temperature and temperature difference in the performance of forward osmosis desalination process , 2012 .

[94]  J. McCutcheon,et al.  Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis , 2006 .

[95]  Nidal Hilal,et al.  Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination , 2016 .

[96]  Rong Wang,et al.  Significantly enhanced water flux in forward osmosis desalination with polymer-graphene composite hydrogels as a draw agent , 2013 .

[97]  N. Smith Sherman , 2014 .

[98]  A. Elnaghy,et al.  Antibacterial activity of calcium hydroxide combined with chitosan solutions and the outcomes on the bond strength of RealSeal sealer to radicular dentin , 2012, Journal of biomedical research.

[99]  Shaomin Liu,et al.  Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles , 2013 .

[100]  J. McCutcheon,et al.  Internal concentration polarization in forward osmosis: role of membrane orientation , 2006 .

[101]  S. M. Kuznicki,et al.  Pervaporative desalination of water using natural zeolite membranes , 2012 .

[102]  Menachem Elimelech,et al.  Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets , 2014 .

[103]  Md. Saifur Rahaman,et al.  In Situ Silver Decoration on Graphene Oxide-Treated Thin Film Composite Forward Osmosis Membranes: Biocidal Properties and Regeneration Potential , 2016 .

[104]  Bumsuk Jung,et al.  High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes. , 2012, Journal of colloid and interface science.

[105]  Shuaifei Zhao,et al.  Relating solution physicochemical properties to internal concentration polarization in forward osmos , 2011 .

[106]  Nidal Hilal,et al.  Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination? , 2016 .

[107]  S. Hasan,et al.  Recent applications of nanomaterials in water desalination: A critical review and future opportunities , 2015 .

[108]  Ilkka T Miettinen,et al.  The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes. , 2006, Water research.

[109]  J. Lebeault,et al.  Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. , 2007, Water research.

[110]  B. M. Veeregowda,et al.  Biofilms: A survival strategy of bacteria , 2003 .

[111]  Hans-Curt Flemming,et al.  Biofouling on membranes - A microbiological approach , 1988 .

[112]  Heyou Han,et al.  Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. , 2014, Nanoscale.