FORMAL ENGINEERING DESIGN SYNTHESIS FORMAL ENGINEERING DESIGN SYNTHESIS

Synthesis of novel engineering designs often requires experimental exploration with a wide range of different configurations. Evolutionary and adaptive exploration methods have successfully synthesized novel design configurations in several engineering application areas, including VLSI, pattern packing, mechanical structures and mechanisms. An adaptive search method alters its selection mechanism and/or search operators in response to the structure of the performance landscape. These methods stochastically refine individual candidate solutions in a population, evaluate the fitness or performance of these new candidates, and keep only those with good fitness values for the next iteration. An overview of evolutionary and adaptive search methods is presented, in the context of their application to engineering design synthesis, including several examples and a discussion of future research trends in this area.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[3]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  Huang,et al.  AN EFFICIENT GENERAL COOLING SCHEDULE FOR SIMULATED ANNEALING , 1986 .

[6]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[7]  R. Benjamin,et al.  Node Placement Algorithms to Display Communications Topology to Network Controllers , 1988 .

[8]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[9]  Larry J. Eshelman,et al.  Biases in the Crossover Landscape , 1989, ICGA.

[10]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[11]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[12]  Kimmo Kaski,et al.  Image Deconvolution with Simulated Annealing Method , 1990 .

[13]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[14]  Yingbo Hua,et al.  Vector quantization of images using neural networks and simulated annealing , 1991, Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop.

[15]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[16]  Abhijit Chatterjee,et al.  A new simultaneous circuit partitioning and chip placement approach based on simulated annealing , 1991, DAC '90.

[17]  Nicholas J. Radcliffe,et al.  Genetic neural networks on MIMD computers , 1992 .

[18]  Yingbo Hua,et al.  Image vector quantization using neural networks and simulated annealing , 1992 .

[19]  T. H. Sloane,et al.  CMOS leaf-cell design using simulated annealing , 1992, [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems.

[20]  Stefan Voß,et al.  Tabu search techniques for the quadratic semiassignment problem , 1992 .

[21]  Jadranka Skorin-Kapov,et al.  Scheduling a flow-line manufacturing cell: a tabu search approach , 1993 .

[22]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[23]  Kazuhiro Saitou,et al.  Genetic algorithms as an approach to configuration and topology design , 1994, DAC 1993.

[24]  Wen-Chyuan Chiang,et al.  Simulated annealing and tabu search approaches to unidirectional flowpath design for Automated Guided Vehicle Systems , 1994, Ann. Oper. Res..

[25]  Peter Ross,et al.  Fast Practical Evolutionary Timetabling , 1994, Evolutionary Computing, AISB Workshop.

[26]  D. Skorin-Kapov,et al.  On tabu search for the location of interacting hub facilities , 1994 .

[27]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[28]  Michel Gendreau,et al.  METAHEURISTICS FOR THE VEHICLE ROUTING PROBLEM. , 1994 .

[29]  Ben Paechter Optimising a Presentation Timetable Using Evolutionary Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[30]  Celso C. Ribeiro,et al.  A graph partitioning heuristic for the parallel pseudo-exhaustive logical test of VLSI combinational circuits , 1994, Ann. Oper. Res..

[31]  Kit Po Wong,et al.  Development of Hybrid Optimisation Techniques Based on Genetic Algorithms and Simulated Annealing , 1994, Evo Workshops.

[32]  M. Jakiela,et al.  Simulation and shape synthesis of kinematic pairs via small-scale interference detection , 1994 .

[33]  Douglas H. Norrie,et al.  A Multi-Agent Intelligent Design System Integrating Manufacturing and Shop-Floor Control , 1995, ICMAS.

[34]  T. Richards,et al.  Techniques for routeing and scheduling services on a transmission network , 1995 .

[35]  Takashi Watanabe,et al.  Self Organizational Approach for Integration of Distributed Expert Systems , 1995, ICMAS.

[36]  Jadranka Skorin-Kapov,et al.  Mapping Tasks to Processors to Minimize Communication Time in a Multiprocessor System , 1995 .

[37]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[38]  Sandip Sen,et al.  Evolving Cooperation Strategies , 1995, ICMAS.

[39]  Jonathan Cagan,et al.  An improved shape annealing algorithm for truss topology , 1995 .

[40]  Kazuhiro Saitou,et al.  Automated Optimal Design of Mechanical Conformational Switches , 1995, Artificial Life.

[41]  Yves Rochat,et al.  Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.

[42]  Mark J. Jakiela,et al.  Solving Pattern Nesting Problems with Genetic Algorithms Employing Task Decomposition and Contact Detection , 1995, Evolutionary Computation.

[43]  C. Ribeiro,et al.  A Tabu Search Approach to Task Scheduling on Heterogeneous Processors under Precedence Constraints , 1995, Int. J. High Speed Comput..

[44]  Jörg P. Müller,et al.  A Model for Cooperative Transportation Scheduling , 1995, ICMAS.

[45]  Godfrey A. Walters,et al.  Genetic Operators and Constraint Handling for Pipe Network Optimization , 1995, Evolutionary Computing, AISB Workshop.

[46]  Jonathan Cagan,et al.  A Simulated Annealing-Based Approach to Three-Dimensional Component Packing , 1995 .

[47]  Khaled Ghédira,et al.  Distributed Flow Shop Scheduling Problem - Global versus Local Optimization , 1995, ICMAS.

[48]  Rex K. Kincaid,et al.  Heuristic Search for the Polymer Straightening Problem , 1995 .

[49]  G. Reddy,et al.  Optimally Directed Truss Topology Generation Using Shape Annealing , 1995 .

[50]  Jonathan Cagan,et al.  Recursive annealing: A computational model for machine design , 1995 .

[51]  Peter Ross,et al.  Comparing Genetic Algorithms, Simulated Annealing, and Stochastic Hillclimbing on Timetabling Problems , 1995, Evolutionary Computing, AISB Workshop.

[52]  Hugh M. Cartwright,et al.  Evolutionary Design of Synthetic Routes in Chemistry , 1996, Evolutionary Computing, AISB Workshop.

[53]  M. Jakiela,et al.  Genetic algorithm-based structural topology design with compliance and topology simplification considerations , 1996 .

[54]  Kazuyuki Murase,et al.  Genetic Evolution of a Logic Circuit which Controls an Autonomous Mobile Robot , 1996, ICES.

[55]  Ken Lunn,et al.  Spatial Reasoning with Genetic Algorithms - An Application in Planning of Safe Liquid Petroleum Gas Sites , 1996, Evolutionary Computing, AISB Workshop.

[56]  Mitsuo Gen,et al.  Genetic Algorithms for Solving Multiprocessor Scheduling Problems , 1996, SEAL.

[57]  Phil Husbands,et al.  Two Applications of Genetic Algorithms to Component Design , 1996, Evolutionary Computing, AISB Workshop.

[58]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Local Search , 1996, INFORMS J. Comput..

[59]  Peter Ross,et al.  A Genetic Algorithm for Job-Shop Problems with Various Schedule Quality Criteria , 1996, Evolutionary Computing, AISB Workshop.

[60]  Qiangfu Zhao A Study on Co-evolutionary Learning of Neural Networks , 1996, SEAL.

[61]  Katsuhiko Shirai,et al.  Proceedings of the 4th IEEE Workshop on Neural Networks for Signal Processing , 1996 .

[62]  Simon Szykman,et al.  HVAC CAD Layout Tools: A Case Study of University/Industry Collaboration , 1996 .

[63]  Mehrdad Salami,et al.  Data Compression Based on Evolvable Hardware , 1996, ICES.

[64]  Celso C. Ribeiro,et al.  Parallel tabu search message-passing synchronous strategies for task scheduling under precedence constraints , 1996, J. Heuristics.

[65]  T. Schnier,et al.  Genetic Engineering and Design Problems , 1997 .

[66]  Léon J. M. Rothkrantz,et al.  Ant-Based Load Balancing in Telecommunications Networks , 1996, Adapt. Behav..

[67]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[68]  David J. Lilja,et al.  Designing Multiprocessor Scheduling Algorithms Using a Distributed Genetic Algorithm System , 1997 .

[69]  Jonathan Cagan,et al.  Optimal Three-Dimensional Placement of Heat Generating Electronic Components , 1997 .

[70]  Simon Szykman,et al.  Constrained Three-Dimensional Component Layout Using Simulated Annealing , 1997 .

[71]  Peter Ross,et al.  Practical Issues and Recent Advances in Job- and Open-Shop Scheduling , 1997 .

[72]  Mark J. Jakiela,et al.  Generation and Classification of Structural Topologies With Genetic Algorithm Speciation , 1997 .

[73]  Hyacinth S. Nwana,et al.  An Introduction to Agent Technology , 1997, Software Agents and Soft Computing.

[74]  J. Cagan,et al.  A Shape Annealing Approach to Optimal Truss Design With Dynamic Grouping of Members , 1997 .

[75]  Jens Lienig,et al.  A parallel genetic algorithm for performance-driven VLSI routing , 1997, IEEE Trans. Evol. Comput..

[76]  Jonathan Cagan,et al.  Innovative dome design: Applying geodesic patterns with shape annealing , 1997, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[77]  Zbigniew Michalewicz,et al.  Adaptive evolutionary planner/navigator for mobile robots , 1997, IEEE Trans. Evol. Comput..

[78]  Raphael T. Haftka,et al.  Evolutionary Optimization of Composite Structures , 1997 .

[79]  Jens Lienig,et al.  Physical Design of VLSI Circuits and the Application of Genetic Algorithms , 1997 .

[80]  Simon Szykman,et al.  An Integrated Approach to Optimal Three Dimensional Layout and Routing , 1998 .

[81]  Eugeniusz Nowicki,et al.  The flow shop with parallel machines: A tabu search approach , 1998, Eur. J. Oper. Res..

[82]  G. Chadderdon,et al.  Automated Rule Extraction for Engine Health Monitoring , 1998, Evolutionary Programming.

[83]  Edmund K. Burke,et al.  A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem , 1998, SEAL.

[84]  Alexei N. Skourikhine,et al.  An Evolutionary Algorithm for Designing Feedforward Neural Networks , 1998, Evolutionary Programming.

[85]  Yoshiji Fujimoto,et al.  Applying the Evolutionary Neural Networks with Genetic Algorithms to Control a Rolling Inverted Pendulum , 1998, SEAL.

[86]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[87]  Louis A. Tamburino,et al.  A Hybrid Evolutionary Learining System for Synthesizing Neural Network Pattern Recognition Systems , 1998, Evolutionary Programming.

[88]  Mitsuo Gen,et al.  Fuzzy Partition and Input Selection by Genetic Algorithms for Designing Fuzzy Rule-Based Classification Systems , 1998, Evolutionary Programming.

[89]  Riccardo Poli,et al.  Efficient Evolution of Asymmetric Recurrent Neural Networks Using a PDGP-inspired Two-Dimensional Representation , 1998, EuroGP.

[90]  L. Yang Fuzzy Logic with Engineering Applications , 1999 .

[91]  Luciano Sánchez,et al.  Evolving Fuzzy Rule Based Classifiers with GA-P: A Grammatical Approach , 1999, EuroGP.

[92]  Wei Chen,et al.  Quality utility : a Compromise Programming approach to robust design , 1999 .

[93]  E. Antonsson,et al.  Mask-Layout Synthesis Through an Evolutionary Algorithm , 1999 .

[94]  Elizabeth M. Rudnick,et al.  Genetic algorithms for VLSI design, layout & test automation , 1999 .

[95]  Daijin Kim,et al.  A MS-GS VQ codebook design for wireless image communication using genetic algorithms , 1999, IEEE Trans. Evol. Comput..

[96]  Michael O'Neill,et al.  Evolving Multi-line Compilable C Programs , 1999, EuroGP.

[97]  Jonathan Cagan,et al.  A-Design: An Agent-Based Approach to Conceptual Design in a Dynamic Environment , 1999 .

[98]  Daisuke Sasaki,et al.  Multiobjective evolutionary computation for supersonic wing-shape optimization , 2000, IEEE Trans. Evol. Comput..

[99]  Masahiro Hiji,et al.  A New Genetic Representation and Common Cluster Crossover for Job Shop Scheduling Problems , 2000, EvoWorkshops.

[100]  Erik K. Antonsson,et al.  Dynamic partitional clustering using evolution strategies , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[101]  Tong Heng Lee,et al.  Automatic Design of Multivariable QFT Control System via Evolutionary Computation , 2000, EvoWorkshops.

[102]  Ben Paechter,et al.  Optimising an Evolutionary Algorithm for Scheduling , 2000, EvoWorkshops.

[103]  Q. Henry Wu,et al.  A Faster Genetic Clustering Algorithm , 2000, EvoWorkshops.

[104]  Ali M. S. Zalzala,et al.  Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons , 2000, IEEE Trans. Evol. Comput..

[105]  Akira Todoroki,et al.  Permutation genetic algorithm for stacking sequence design of composite laminates , 2000 .

[106]  Q. Henry Wu,et al.  A Genetic Algorithm with Local Search for Solving Job Shop Problems , 2000, EvoWorkshops.

[107]  M. Jakiela,et al.  Continuum structural topology design with genetic algorithms , 2000 .

[108]  J. Cagan,et al.  An Extended Pattern Search Algorithm for Three-Dimensional Component Layout , 2000 .

[109]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..