Maximum likelihood, ESPRIT, and periodogram frequency estimation of radar signals in K-distributed clutter

Abstract The contribution of this paper is the derivation of the joint maximum likelihood (ML) estimator of complex amplitude and Doppler frequency of a radar target signal embedded in correlated non-Gaussian clutter modelled as a compound-Gaussian process. The estimation accuracy of the ML frequency estimator is investigated and compared with that of the well-known periodogram and ESPRIT estimators under various operational scenarios. The hybrid Cramer–Rao lower bound (HCRLB) and a large sample closed-form expression for the mean square estimation error are also derived for Swerling I target signal. Finally, numerical results obtained by Monte Carlo simulation are checked by means of measured sea clutter data for the general case of fluctuating target amplitude.

[1]  Fulvio Gini,et al.  High resolution sea clutter data: statistical analysis of recorded live data , 1997 .

[2]  Georgios B. Giannakis,et al.  Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators , 1995, IEEE Trans. Signal Process..

[3]  Ananthram Swami,et al.  Parameter estimation for random amplitude chirp signals , 1999, IEEE Trans. Signal Process..

[4]  F. Gini Sub-optimum coherent radar detection in a mixture of K-distributed and Gaussian clutter , 1997 .

[5]  A. Öztürk,et al.  Non-Gaussian random vector identification using spherically invariant random processes , 1993 .

[6]  Anastasios Drosopoulos Description of the OHGR Database. , 1994 .

[7]  Fulvio Gini,et al.  A cumulant-based adaptive technique for coherent radar detection in a mixture of K-distributed clutter and Gaussian disturbance , 1997, IEEE Trans. Signal Process..

[8]  Olivier Besson,et al.  Analysis of MUSIC and ESPRIT frequency estimates for sinusoidal signals with lowpass envelopes , 1996, IEEE Trans. Signal Process..

[9]  Petar M. Djuric,et al.  Bayesian detection and estimation of cisoids in colored noise , 1995, IEEE Trans. Signal Process..

[10]  Fulvio Gini,et al.  A radar application of a modified Cramer-Rao bound: parameter estimation in non-Gaussian clutter , 1998, IEEE Trans. Signal Process..

[11]  Muralidhar Rangaswamy,et al.  Computer generation of correlated non-Gaussian radar clutter , 1995 .

[12]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[13]  Andreas Jakobsson,et al.  Cisoid parameter estimation in the colored noise case: asymptotic Cramer-Rao bound, maximum likelihood, and nonlinear least-squares , 1997, IEEE Trans. Signal Process..

[14]  Petre Stoica,et al.  Exponential signals with time-varying amplitude: Parameter estimation via polar decomposition , 1998, Signal Process..

[15]  Olivier Besson,et al.  Two subspace-based methods for frequency estimation of sinusoidal signals with random amplitude , 1997 .

[16]  Georgios B. Giannakis,et al.  Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics , 1995, IEEE Trans. Signal Process..

[17]  Ananthram Swami,et al.  Cramer-Rao bounds and maximum likelihood estimation for random amplitude phase-modulated signals , 1999, IEEE Trans. Signal Process..

[18]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[19]  Mohammad Reza Aref,et al.  Detection of coherent radar signals with unknown Doppler shift , 1996 .

[20]  Georgios B. Giannakis,et al.  Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach , 1998, IEEE Trans. Commun..

[21]  S. Watts Radar clutter and multipath propagation , 1991 .

[22]  K. J. Sangston,et al.  Coherent detection of radar targets in a non-gaussian background , 1994 .

[23]  Theagenis J. Abatzoglou,et al.  A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on Newton's method , 1985, IEEE Trans. Acoust. Speech Signal Process..

[24]  Olivier Besson,et al.  Analysis of a frequency estimator for a class of laser signals with time-varying amplitude , 1998 .

[25]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[26]  A. W. Rihaczek Principles of high-resolution radar , 1969 .

[27]  Marco Luise,et al.  Cramer-Rao bounds in the parametric estimation of fading radiotransmission channels , 1998, IEEE Trans. Commun..

[28]  Fulvio Gini,et al.  Clairvoyant and adaptive signal detection in non-Gaussian clutter: a data-dependent threshold interpretation , 1999, IEEE Trans. Signal Process..

[29]  Ananthram Swami,et al.  Cramer-Rao bounds for deterministic signals in additive and multiplicative noise , 1996, Signal Process..

[30]  Marco Lops,et al.  Radar detection of signals with unknown parameters in K-distributed clutter , 1991 .

[31]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[32]  Petre Stoica,et al.  Sinusoidal signals with random amplitude: least-squares estimators and their statistical analysis , 1995, IEEE Trans. Signal Process..

[33]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[34]  Boaz Porat,et al.  A course in digital signal processing , 1996 .

[35]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[36]  A. Farina,et al.  Radar detection of targets located in a coherent K distributed clutter background , 1992 .

[37]  K. J. Sangston,et al.  Structures for radar detection in compound Gaussian clutter , 1999 .