Adaptation en ligne d ’ un dictionnaire pour les méthodes à noyau

This article tackles the online identification problem for nonlinear and nonstationary systems using kernel methods. The order of the model is controlled by the coherence criterion considered as a sparsification technique which leads to select the most relevant kernel functions to form a dictionary. We explore the dictionary adaptation using a stochastic gradient descent method along with an online kernel identification algorithm. For the latter, without limitation, it may be the kernel recursive least squares algorithm or the kernel affine projection algorithm. The proposed method leads to a reduction of the instantaneous quadratic error and to a decrease in the model’s order.

[1]  Paul Honeine,et al.  Online Kernel Adaptive Algorithms With Dictionary Adaptation for MIMO Models , 2013, IEEE Signal Processing Letters.

[2]  Shie Mannor,et al.  The kernel recursive least-squares algorithm , 2004, IEEE Transactions on Signal Processing.

[3]  Paul Honeine Méthodes à noyau pour l'analyse et la décision en environnement non-stationnaire. (Kernel Machines for analysis and decision-making in a non-stationary environment) , 2007 .

[4]  Hichem Snoussi,et al.  Distributed prediction of time series data with kernels and adaptive filtering techniques in sensor networks , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[5]  Paul Honeine,et al.  On-line Nonlinear Sparse Approximation of Functions , 2007, 2007 IEEE International Symposium on Information Theory.

[6]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[7]  Weifeng Liu,et al.  Kernel Adaptive Filtering: A Comprehensive Introduction , 2010 .

[8]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[9]  Paul,et al.  Modélisation parcimonieuse non linéaire en ligne par une méthode à noyau reproduisant et un critère de cohérence , 2007 .

[10]  Paul Honeine,et al.  Online Kernel Principal Component Analysis: A Reduced-Order Model , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  R. Lengelle,et al.  Ieee Transactions on Signal Processing, Edics: Bio-appl Nonlinear Regularized Wiener Filtering with Kernels. Application in Denoising Meg Data Corrupted by Ecg , 2022 .

[12]  Paul Honeine,et al.  Online one-class machines based on the coherence criterion , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[13]  Paul Honeine,et al.  Online Prediction of Time Series Data With Kernels , 2009, IEEE Transactions on Signal Processing.

[14]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[15]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[16]  Fre Cnrs FUNCTIONAL ESTIMATION IN HILBERT SPACE FOR DISTRIBUTED LEARNING IN WIRELESS SENSOR NETWORKS , 2009 .

[17]  Tokunbo Ogunfunmi,et al.  Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches , 2007 .

[18]  Hichem Snoussi,et al.  Distributed Regression in Sensor Networks with a Reduced-Order Kernel Model , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.