Galaxy and Mass Assembly (GAMA): Galaxies at the faint end of the Hα luminosity function

We present an analysis of the properties of the lowest Hα-luminosity galaxies (LHα ≤ 4 × 1032 W; SFR 1010Mʘ. The low-SFR systems are found to exist predominantly in the lowest-density environments (median density ∼0.02 galaxy Mpc−2) with none in environments more dense than ∼1.5 galaxy Mpc−2. Their current specific SFRs (SSFRs; −8.5 < log [SSFR (yr −1)] < −12) are consistent with their having had a variety of star formation histories. The low-density environments of these galaxies demonstrate that such low-mass, star-forming systems can only remain as low mass and form stars if they reside sufficiently far from other galaxies to avoid being accreted, dispersed through tidal effects or having their gas reservoirs rendered ineffective through external processes.

[1]  B. Tinsley EVOLUTION OF THE STARS AND GAS IN GALAXIES. , 2022, 2203.02041.

[2]  S. Cole,et al.  Star formation trends in high-redshift galaxy surveys: the elephant or the tail? , 2010, 1011.2745.

[3]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[4]  Robert C. Nichol,et al.  Galaxy and Mass Assembly: FUV, NUV, ugrizYJHK Petrosian, Kron and Sérsic photometry , 2010, 1009.0615.

[5]  R. Sharp,et al.  Sky subtraction at the Poisson limit with fibre‐optic multiobject spectroscopy , 2010, 1007.0648.

[6]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey - II. The star formation efficiency of massive galaxies , 2010, 1006.5447.

[7]  B. Whitney,et al.  THE PRESENT-DAY STAR FORMATION RATE OF THE MILKY WAY DETERMINED FROM SPITZER-DETECTED YOUNG STELLAR OBJECTS , 2010, 1001.3672.

[8]  Luth,et al.  Alternative diagnostic diagrams and the 'forgotten' population of weak line galaxies in the SDSS , 2009, 0912.1643.

[9]  Michael J. Kurtz,et al.  EVOLUTION OF THE Hα LUMINOSITY FUNCTION , 2009, 0911.0417.

[10]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[11]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): Optimal Tiling of Dense Surveys with a Multi-Object Spectrograph , 2009, Publications of the Astronomical Society of Australia.

[12]  S. Bamford,et al.  GAMA: towards a physical understanding of galaxy formation , 2009, 0910.5123.

[13]  Benjamin D. Johnson,et al.  COMPARISON OF Hα AND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES , 2009, 0909.5205.

[14]  J. Lee,et al.  On the interstellar medium and star formation demographics of galaxies in the local universe , 2009, 0908.1122.

[15]  M. Bureau,et al.  The SAURON project - XIII. SAURON-GALEX study of early-type galaxies: the ultraviolet colour-magnitude relations and Fundamental Planes , 2009, 0906.3318.

[16]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[17]  O. I. Wong,et al.  EVIDENCE FOR A NONUNIFORM INITIAL MASS FUNCTION IN THE LOCAL UNIVERSE , 2009, 0902.0384.

[18]  Christopher R. Genovese,et al.  Revealing components of the galaxy population through non-parametric techniques , 2008, 0809.2800.

[19]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[20]  J. Bland-Hawthorn,et al.  When is star formation episodic? A delay differential equation ‘negative feedback’ model , 2008, 0801.3469.

[21]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[22]  R. Kennicutt,et al.  The Star Formation Demographics of Galaxies in the Local Volume , 2007, 0711.1390.

[23]  K. Glazebrook,et al.  Evidence for a Nonuniversal Stellar Initial Mass Function from the Integrated Properties of SDSS Galaxies , 2007, 0711.1309.

[24]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[25]  G. Stinson,et al.  Breathing in Low-Mass Galaxies: A Study of Episodic Star Formation , 2007, 0705.4494.

[26]  Caltech,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[27]  M. Drinkwater,et al.  The effect of local galaxy surface density on star formation for H i selected galaxies , 2006, astro-ph/0608236.

[28]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[29]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[30]  Vladimir Churilov,et al.  Performance of AAOmega: the AAT multi-purpose fiber-fed spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[31]  S. Driver,et al.  The Millennium Galaxy Catalogue : morphological classification and bimodality in the colour-concentration plane , 2006, astro-ph/0602240.

[32]  M. Blanton Galaxies in SDSS and DEEP2: A Quiet Life on the Blue Sequence? , 2005, astro-ph/0512127.

[33]  P. Kroupa,et al.  The Variation of Integrated Star Initial Mass Functions among Galaxies , 2005, astro-ph/0502525.

[34]  S. Sakai,et al.  An Hα Imaging Survey of Galaxies in the Local 11 Mpc Volume , 2004, 0807.2035.

[35]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Luminosity functions by density environment and galaxy type , 2004, astro-ph/0407537.

[36]  K. Masters,et al.  The Impact of Distance Uncertainties on Local Luminosity and Mass Functions , 2004, astro-ph/0404455.

[37]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[38]  C. Collins,et al.  The Hα Galaxy Survey ⋆ I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies , 2003, astro-ph/0311030.

[39]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[40]  R. Nichol,et al.  Star Formation Rate Indicators in the Sloan Digital Sky Survey , 2003, astro-ph/0306621.

[41]  A. Saha,et al.  Deep Hubble Space Telescope Imaging of IC 1613. II. The Star Formation History , 2003, astro-ph/0306457.

[42]  Christopher J. Miller,et al.  Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey , 2002, astro-ph/0210193.

[43]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[44]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The environmental dependence of galaxy star formation rates near clusters , 2002, astro-ph/0203336.

[45]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[46]  G. Chabrier The Galactic disk mass-budget : I. stellar mass-function and density , 2001, astro-ph/0107018.

[47]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[48]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[49]  J. Tonry,et al.  The Surface Brightness Fluctuation Survey of Galaxy Distances. II. Local and Large-Scale Flows , 1999, astro-ph/9907062.

[50]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[51]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[52]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[53]  Z. Tsvetanov,et al.  Toward an Understanding of the Seyfert Galaxy NGC 5252: A Spectroscopic Study , 1996 .

[54]  P. Stetson,et al.  Episodic Star Formation in the Carina dSph Galaxy , 1996, astro-ph/9601020.

[55]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[56]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .