Static Response of Composite Circular Cylindrical Shells Studied by Different Theories

A detailed study, on the static response of cross-ply laminated composite circular cylindrical shell of revolution and shell panel with various support conditions, has been made using Levy type of solution and the classical shell theories of FlSanders, Love and Donnell in an unified form. It has been shown that while developing a Levy type of solution using aforementioned theories, certain difficulty is encountered for determining the particular integral in respect of Fl Sanders and Love theories. This difficulty has been overcome by making use of the membrane solution as a particular integral. A comparative study has been carried out using the above shell theories for different geometrical parameters, lamination schemes and support conditions. It has been shown that Donnell theory predicts inaccurate results for certain lamination schemes, support conditions and geometrical parameters of the shell. It is suggested that, for developing shear deformation shell theories, it would be better to use a more accurate shell theory like Flügge Sommario. La risposta statica di gusci cilindrici circolari di materiale composito laminato, a strati incrociati, e di pannelli con varie condizioni di supporto viene analizzata utilizzando in una forma unificata soluzioni tipo Levy e le classiche teorie dei gusci di Flügge Sanders, Love e Donnell. Si mostra che nello sviluppare una soluzione di tipo Levy si incontra una certa difficoltà nel determinare l'integrale particolare rispetto alle teorie di Flügge, Sanders e Love. Tale difficoltà viene superata usando la soluzione di membrana come integrale particolare. Viene sviluppato uno studio comparativo facendo uso delle suddette teorie dei gusci per differenti parametri geometrici, schemi di laminazione e condizioni di vincolo. Si mostra che la teoria di Donnell fornisce risultati non accurati per certi schemi di laminazione, condizioni di supporto e parametri geometrici del guscio. Si suggerisce che per sviluppare teorie dei gusci che tengano conto delle deformazioni di scorrimento sarebbe più opportuno l'uso di una teoria dei gusci più accurata come ad esempio quella di Flügge.

[1]  W. Flügge Stresses in Shells , 1960 .

[2]  J. N. Reddy,et al.  Vibration and stability analyses of cross-ply laminated circular cylindrical shells , 1992 .

[3]  Liviu Librescu,et al.  A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: Free vibration and buckling , 1989 .

[4]  B. S. Kumar,et al.  Static analysis of thick laminated circular cylindrical shells , 1993 .

[5]  K. Soldatos,et al.  A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels , 1984 .

[6]  J. Ren,et al.  Exact solutions for laminated cylindrical shells in cylindrical bending , 1987 .

[7]  J. Reddy,et al.  Thermal effects on the response of cross-ply laminated shallow shells , 1992 .

[8]  J. N. Reddy,et al.  Influence of edge conditions on the modal characteristics of cross-ply laminated shells , 1990 .

[9]  J. N. Reddy,et al.  A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories , 1989 .

[10]  George J. Simitses,et al.  Buckling of delaminated, long, cylindrical panels under pressure , 1988 .

[11]  Reaz Z. Chaudhuri,et al.  Arbitrarily Laminated, Anisotropic Cylindrical Shell Under Internal Pressure , 1986 .

[12]  K. Chandrashekhara,et al.  Assessment of Shell Theories for the Static Analysis of Cross-Ply Laminated Circular Cylindrical Shells , 1995 .

[13]  Jack R. Vinson,et al.  Composite Materials and Their Use in Structures , 1975 .

[14]  B. S. Kumar,et al.  Static analysis of a thick laminated circular cylindrical shell subjected to axisymmetric load , 1993 .

[15]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[16]  Liviu Librescu,et al.  A shear deformable theory of laminated composite shallow shell-type panels and their response analysis II: Static response , 1989 .

[17]  L. Donnell,et al.  Stability of Thin-Walled Tubes Under Torsion , 1934, Journal of Fluids Engineering.

[18]  A. Love A treatise on the mathematical theory of elasticity , 1892 .