Geometrically designed variable knot splines in generalized (non-)linear models

[1]  Xavier Tricoche,et al.  Fast Automatic Knot Placement Method for Accurate B-spline Curve Fitting , 2020, Comput. Aided Des..

[2]  Péter Kovács,et al.  Nonlinear least-squares spline fitting with variable knots , 2019, Appl. Math. Comput..

[3]  V. Kaishev,et al.  Online supplement to: Geometrically Designed Variable Knot Splines in Generalized (Non-)Linear Models , 2019 .

[4]  Yongmiao Hong,et al.  Adaptive penalized splines for data smoothing , 2017, Comput. Stat. Data Anal..

[5]  Vladimir K. Kaishev,et al.  Geometrically designed, variable knot regression splines , 2016, Comput. Stat..

[6]  I. Currie On fitting generalized linear and non-linear models of mortality , 2016 .

[7]  Chong Gu,et al.  Smoothing Spline ANOVA Models: R Package gss , 2014 .

[8]  Alexander Sokol,et al.  DEGREES OF FREEDOM FOR NONLINEAR LEAST SQUARES ESTIMATION , 2014, 1402.2997.

[9]  R. Tibshirani Adaptive piecewise polynomial estimation via trend filtering , 2013, 1304.2986.

[10]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[11]  Jiaqiang Yan,et al.  Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2. , 2009, Nature materials.

[12]  Spiridon I. Penev,et al.  GeD spline estimation of multivariate Archimedean copulas , 2008, Comput. Stat. Data Anal..

[13]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[14]  Gleb Beliakov,et al.  Least squares splines with free knots: global optimization approach , 2004, Appl. Math. Comput..

[15]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[16]  Xiaotong Shen,et al.  Adaptive Model Selection , 2002 .

[17]  Chong Gu Smoothing Spline Anova Models , 2002 .

[18]  Xiaotong Shen,et al.  Spatially Adaptive Regression Splines and Accurate Knot Selection Schemes , 2001 .

[19]  C. Biller Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models , 2000 .

[20]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[21]  S. Wood Modelling and smoothing parameter estimation with multiple quadratic penalties , 2000 .

[22]  Mary J. Lindstrom,et al.  Penalized Estimation of Free-Knot Splines , 1999 .

[23]  Jianming Ye On Measuring and Correcting the Effects of Data Mining and Model Selection , 1998 .

[24]  G. Wahba,et al.  Hybrid Adaptive Splines , 1997 .

[25]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[26]  P. W. Lane Generalized Nonlinear Models , 1996 .

[27]  G. Wahba,et al.  Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy : the 1994 Neyman Memorial Lecture , 1995 .

[28]  Hubert Schwetlick,et al.  Least squares approximation by splines with free knots , 1995 .

[29]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[30]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[31]  D. Jupp Approximation to Data by Splines with Free Knots , 1978 .

[32]  Abraham Charnes,et al.  The Equivalence of Generalized Least Squares and Maximum Likelihood Estimates in the Exponential Family , 1976 .