Superior performance of a MEMS-based solid propellant microthruster (SPM) array with nanothermites

[1]  Michael R. Zachariah,et al.  Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles , 2016 .

[2]  Reda Yahiaoui,et al.  A MEMS-based solid propellant microthruster array for space and military applications , 2015 .

[3]  Hongpeng Ma,et al.  Design, fabrication and test of a solid propellant microthruster array by conventional precision machining , 2015 .

[4]  M. Zachariah,et al.  Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles , 2015 .

[5]  Q. Shen,et al.  An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters , 2015 .

[6]  Gregory Young,et al.  Application of Nano‐Aluminum/Nitrocellulose Mesoparticles in Composite Solid Rocket Propellants , 2015 .

[7]  Mahdi Nabipour,et al.  Design and implementation of attitude control algorithm of a satellite on a three-axis gimbal simulator , 2015 .

[8]  Haiyang Wang,et al.  Ignition and Combustion Characterization of Nano-Al-AP and Nano-Al-CuO-AP Micro-sized Composites Produced by Electrospray Technique , 2015 .

[9]  Giulio Manzoni,et al.  Cubesat Micropropulsion Characterization in Low Earth Orbit , 2015 .

[10]  Haiyang Wang,et al.  Assembly and reactive properties of Al/CuO based nanothermite microparticles , 2014 .

[11]  Keshab Gangopadhyay,et al.  Effect of Nitrocellulose Gasifying Binder on Thrust Performance and High-g Launch Tolerance of Miniaturized Nanothermite Thrusters , 2014 .

[12]  Balamurugan Balasubramanian,et al.  A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[13]  Michael R. Zachariah,et al.  Do nanoenergetic particles remain nano-sized during combustion? , 2014 .

[14]  A. Gomez,et al.  Scaling up the power of an electrospray microthruster , 2014 .

[15]  Keshab Gangopadhyay,et al.  Fast-Impulse Nanothermite Solid-Propellant Miniaturized Thrusters , 2013 .

[16]  Haiyang Wang,et al.  Electrospray formation of gelled nano-aluminum microspheres with superior reactivity. , 2013, ACS applied materials & interfaces.

[17]  Q. Shen,et al.  A fully decoupled design method for MEMS microthruster based on orthogonal analysis , 2013, 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).

[18]  Jongkwang Lee,et al.  MEMS solid propellant thruster array with micro membrane igniter , 2013 .

[19]  S. I. Futko,et al.  Method for characterizing and choosing the solid mixed fuel for microthrusters of microelectromechanical systems , 2012 .

[20]  Carole Rossi,et al.  High‐Energy Al/CuO Nanocomposites Obtained by DNA‐Directed Assembly , 2012 .

[21]  Christopher J. Morris,et al.  Silicon-based bridge wire micro-chip initiators for bismuth oxide–aluminum nanothermite , 2011 .

[22]  Regina Lee,et al.  Solid Propellant Microthruster Design for Nanosatellite Applications , 2011 .

[23]  K. V. Dobrego,et al.  Thermodynamic analysis of solid-fuel mixtures glycidyl azide polymer (GAP)/RDX for miniengines of microelectromechanical systems , 2011 .

[24]  Keshab Gangopadhyay,et al.  Characterization of Nanothermite Material for Solid-Fuel Microthruster Applications , 2009 .

[25]  Sejin Kwon,et al.  Design, Fabrication, and Performance Evaluation of MEMS Solid Propellant Thruster Array , 2009 .

[26]  Qinghui Liu,et al.  Design, fabrication and characterization of a solid propellant micro-Thruster , 2009, 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[27]  Masayoshi Esashi,et al.  Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster☆ , 2008 .

[28]  Deepak Kapoor,et al.  Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites , 2007 .

[29]  Simon S. Ang,et al.  Investigation on the ignition of a MEMS solid propellant microthruster before propellant combustion , 2007 .

[30]  Andy Sadhwani,et al.  A Survey of Micropropulsion for Small Satellites , 2006 .

[31]  Koji Takahashi,et al.  Development Study of 100µm-order Solid Rocket for Pico Satellite Application , 2006 .

[32]  Denis Lagrange,et al.  Final characterizations of MEMS-based pyrotechnical microthrusters , 2005 .

[33]  Lin Yang,et al.  MEMS-based propulsion with solid propellant for micro satellite , 2005, Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005..

[34]  Kaili Zhang,et al.  Development of a low-temperature co-fired ceramic solid propellant microthruster , 2005 .

[35]  Siaw Kiang Chou,et al.  Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface , 2004 .

[36]  S. Chou,et al.  MEMS-based solid propellant microthruster design, simulation, fabrication, and testing , 2004, Journal of Microelectromechanical Systems.

[37]  Josep Samitier,et al.  Electronic circuitry development in a micropyrotechnic system for micropropulsion applications , 2003, SPIE Microtechnologies.

[38]  Tanemasa Asano,et al.  Design and testing of mega-bit microthruster arrays , 2002 .

[39]  Carole Rossi,et al.  Design, fabrication and modeling of solid propellant microrocket-application to micropropulsion , 2002 .

[40]  Carole Rossi,et al.  Design, fabrication and modelling of MEMS-based microthrusters for space application , 2001 .

[41]  Edgar Y. Choueiri,et al.  MEMS Mega-pixel Micro-thruster Arrays for Small Satellite Stationkeeping , 2000 .

[42]  M. Elwenspoek,et al.  Deflection and maximum load of microfiltration membrane sieves made with silicon micromachining , 1997 .