Computing integral points on elliptic curves

By a famous theorem of Siegel [S], the number of integral points on an elliptic curve E over an algebraic number field K is finite. A conjecture of Lang and Demjanenko [L3] states that, for a quasiminimal model of E over K, this number is bounded by a constant depending only on the rank of E over K and on K (see also [HSi], [Zi4]). This conjecture was proved by Silverman [Si1] for elliptic curves E with integral modular invariant j over K and by Hindry and Silverman [HSi] for algebraic function fields K. On the other hand, beginning with Baker [B], bounds for the size of the coefficients of integral points on E have been found by various authors (see [L4]). The most recent bound was exhibited by W. Schmidt [Sch, Th. 2]. However, the bounds are rather large and therefore can be used only for soloving some particular equations (see [TdW], [St]) or for treating a special model of elliptic curves, namely Thue curves of degree 3 (see [GSch]).

[1]  J. Coates,et al.  Integer points on curves of genus 1 , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[3]  S. David Minorations de formes linéaires de logarithmes elliptiques , 1995 .

[4]  S. Lang,et al.  Conjectured Diophantine Estimates on Elliptic Curves , 1983 .

[5]  B. D. Weger,et al.  Algorithms for diophantine equations , 1989 .

[6]  S. Lang,et al.  Elliptic Curves: Diophantine Analysis , 1978 .

[7]  H. Zimmer On Manin's conditional algorithm , 1977 .

[8]  S. Lang DIOPHANTINE APPROXIMATIONS ON TORUSES. , 1964 .

[9]  Jean-François Mestre,et al.  Formules explicites et minoration de conducteurs de vari'et'es alg'ebriques , 1986 .

[10]  Ju. Manin,et al.  CYCLOTOMIC FIELDS AND MODULAR CURVES , 1971 .

[11]  I. Gaál,et al.  Computing all power integral bases of cubic fields , 1989 .

[12]  A. Baker The Diophantine Equation y2 = ax3+bx2+cx+d , 1968 .

[13]  Daniel R. Grayson The arithogeometric mean , 1989 .

[14]  H. G. Zimmer,et al.  Computing the Mordell-Weil group of an elliptic curve over ℚ , 1994 .

[15]  Joseph H. Silverman,et al.  The difference between the Weil height and the canonical height on elliptic curves , 1990 .

[16]  R. Steiner On Mordell's equation y 2 - k = x 3 . A problem of Stolarsky , 1986 .

[17]  N. Tzanakis,et al.  de Weger: How to explicitly solve a Thue - Mahler equation , 1992 .

[18]  Joseph H. Silverman,et al.  The canonical height and integral points on elliptic curves , 1988 .

[19]  H. Zassenhaus On Hensel factorization, I , 1969 .

[20]  A. Pethö,et al.  On the resolution of index form equations , 1991, ISSAC '91.

[21]  N. Tzanakis,et al.  Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms , 1994 .

[22]  Horst G. Zimmer,et al.  On the difference of the Weil height and the Néron-Tate height , 1976 .

[23]  R. Steiner On Mordell’s equation ²-=³: a problem of Stolarsky , 1986 .

[24]  Wolfgang M. Schmidt,et al.  Integer points on curves of genus 1 , 1992 .

[25]  Don Zagier,et al.  Large Integral Points on Elliptic Curves , 1987 .

[26]  Horst Günter Zimmer,et al.  Generalization of Manin's conditional algorithm , 1976, SYMSAC '76.

[27]  F. R. Gantmakher The Theory of Matrices , 1984 .

[28]  De Weger,et al.  de Weger: On the practical solution of the Thue equation , 1989 .

[29]  A. Pethö,et al.  Products of prime powers in binary recurrence sequences, Part I: the hyperbolic case, with an application to the generalized Ramanujan-Nagell equation , 1986 .

[30]  Barry Mazur,et al.  Rational points on modular curves , 1977 .

[31]  H. London,et al.  On mordell's equation y[2]-k=x[3] , 1973 .